Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Endpoint

5/29/2013
12:53 PM
Tim Rohrbaugh
Tim Rohrbaugh
Commentary
50%
50%

Fact Check: Endpoints Are The New Perimeter

Have endpoints been a perimeter and, if so, what should you do?

Some security professionals are stating that "endpoints are the new perimeter." If true, this statement is of manifold complexity and importance -- from a security design, control, and analysis perspective.

Are endpoints the "new" perimeter? "New" was probably used for emphasis (not meant literally) because actually nothing has changed recently to command the use of this adjective. "New" because someone just noticed this? Maybe, but I suspect that many others noticed this long ago, too.

When did the endpoints start acting as "perimeter" devices, then? Well, let's cover what is meant by "perimeter" first. With respect to context, the term is used in information security vernacular to denote a device connected to the Internet (or unknown external systems) with limited filtering or controls between. This "perimeter" device is then understood to be a gate or wall that separates the internal trusted devices from the -– bad -- scary world of the unknown. Depending on your point of view, this virtual land of baddies is comprised of Chinese (replace with any foreign country du jour that wants your stuff), cybermilitary, foreign, and domestic fraudsters, law bending competitors, malicious activists, foreign spy agencies ... so, when did the endpoint become a perimeter? Long ago, my concerned friend.

Specifically, endpoints became perimeters when a young, enterprising developer decided to use a standard application layer protocol for a purpose it was not specified for -- called overloading, e.g. in 1996 when Mudge created NetCat (I know Hobbit is listed as the author today ...) or, in more recent history, when HTTP was used to support remote desktop control, or the thousands of other examples that are right on the tip of your tongue. The problem was that all this time, stateful perimeter devices passed protocols and ports connections directly to endpoints without requiring only specified functionality. Without these, so-called perimeter devices being application-aware, any device that could request DNS resolution (for instance) from the outside network could be remotely controlled, if software (yes, malicious in this case) was aware of the application protocol's non-standard implementation -- this is one backup way that BOTS are controlled today.

So the war has been going on for a very long time under many other labels. In essence, when stateful firewalls won out over application firewalls, the doors opened for software developers to figure out how to get unexpected functionality to work through standard stateful firewalls. Originally you had to run specialized software on the endpoints to take advantage of this unexpected functionality, but shortly thereafter that was not the case, as it was considered embedded functionality. Those "trusted" endpoints on your network are actually connected to the outside, directly, in many cases. And more importantly, you have general staff who are maintaining your perimeter controls.

Would you allow a general business user to manage your firewalls? Of course not, but you are, in essence. As expected, security pros complain about employees being the weakest link. That's because, in many cases, we have general employees a mouse click away from allowing external access to your network. That's a lot of pressure for people who do not see risk and consequence (and the need for control) in the same way that you do, as a security professional.

What can you do about this?

• Use application-aware boundary devices for filtering traffic.

• Re-evaluate your network designs by creating trust zones with application-aware boundaries around your endpoints (workstations, support servers, development/test systems, etc.).

• Use sandboxing technologies on the endpoints to limit access to the real desktop environment.

• Limit entitlements or users and/or applications on the endpoint that can establish external connections.

• Change the way you analyze internal traffic, based on behavior of the endpoint, to factor in that the device is guilty (a threat) until proved innocent (trusted).

Tim Rohrbaugh VP Information Security, Intersections Inc. Tim Rohrbaugh is an information security practitioner who used military (comsec) experience to transition, in the mid 90's, to supporting Government Information Assurance (IA) projects. While splitting time between penetration testing and teaching at DISA, Mr. Rohrbaugh ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 9/21/2020
Hacking Yourself: Marie Moe and Pacemaker Security
Gary McGraw Ph.D., Co-founder Berryville Institute of Machine Learning,  9/21/2020
Startup Aims to Map and Track All the IT and Security Things
Kelly Jackson Higgins, Executive Editor at Dark Reading,  9/22/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-25747
PUBLISHED: 2020-09-25
The Telnet service of Rubetek RV-3406, RV-3409, and RV-3411 cameras (firmware versions v342, v339) can allow a remote attacker to gain access to RTSP and ONFIV services without authentication. Thus, the attacker can watch live streams from the camera, rotate the camera, change some settings (brightn...
CVE-2020-25748
PUBLISHED: 2020-09-25
A Cleartext Transmission issue was discovered on Rubetek RV-3406, RV-3409, and RV-3411 cameras (firmware versions v342, v339). Someone in the middle can intercept and modify the video data from the camera, which is transmitted in an unencrypted form. One can also modify responses from NTP and RTSP s...
CVE-2020-25749
PUBLISHED: 2020-09-25
The Telnet service of Rubetek cameras RV-3406, RV-3409, and RV-3411 cameras (firmware versions v342, v339) could allow an remote attacker to take full control of the device with a high-privileged account. The vulnerability exists because a system account has a default and static password. The Telnet...
CVE-2020-24592
PUBLISHED: 2020-09-25
Mitel MiCloud Management Portal before 6.1 SP5 could allow an attacker, by sending a crafted request, to view system information due to insufficient output sanitization.
CVE-2020-24593
PUBLISHED: 2020-09-25
Mitel MiCloud Management Portal before 6.1 SP5 could allow a remote attacker to conduct a SQL Injection attack and access user credentials due to improper input validation.