Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Attacks/Breaches

9/15/2016
01:20 PM
Connect Directly
Google+
Twitter
RSS
E-Mail
50%
50%

PLCs Possessed: Researchers Create 'Undetectable' Rootkit

New attack to be revealed at Black Hat Europe conference silently overtakes industrial network processes.

Move over, Stuxnet: researchers have discovered a way to silently manipulate the programmable logic controller (PLC) systems that control water, power, and other industrial processes without getting caught.

Researcher Ali Abbasi, a Ph.D. candidate in the distributed and embedded system security group at University of Twente, Netherlands, and Majid Hashemi, a system programmer and independent security researcher at the time of their research, have created an attack on PLCs that unlike Stuxnet, they say, cannot be detected. Abbasi and Hashemi will demonstrate the new PLC rootkit in November at Black Hat Europe in London.

Stuxnet, which was the first known cyberattack on an industrial network to sabotage a physical process, damaged the centrifuges in Iran's Natanz uranium enrichment plant by manipulating the speed the devices spun. The attack, believed to be the handiwork of US and Israeli cyber intelligence units, ultimately was detected by researchers at a European anti-malware firm after Stuxnet somehow spread beyond its Natanz target to other Windows machines.

Abbasi says the PLC rootkit sits directly on the PLC, whereas Stuxnet targeted Windows-based SCADA servers in the plant. It's much less likely to be discovered because it sits at the lower-level of the system. The rootkit works on any brand of PLC, he says.

"It's a race to the bottom" now, Abbasi says. "Everybody has access to higher-level [SCADA operations]. Attackers in the future will go to lower level assaults" such as this to evade detection, he says.

There are few detection functions that can be used in a PLC running a real-time operating system, he says. And if they were running on a PLC, he adds, they still would not spot the rootkit attack.

PLC hacking research isn't new. Researchers at Black Hat USA in August, for example, demonstrated PLC-Blaster, a PLC worm that spreads among PLCs. 

Abbasi says his and Hashemi's rootkit is a new way to exploit a PLC. Previous hacks have targeted the PLC logic code, for example, which tells the PLC what to do in the physical operation. "Our attack instead targets the relation between PLC runtime and logic with the I/O peripherals of it. In our attack, the PLC logic and PLC runtime remain intact," he explains. That prevents any integrity-verification for the PLC from seeing the malicious activity in the PLC.

They place their malicious code in the device's dynamic memory. The PLC believes it's communicating with the I/O, but the rootkit is actually manipulating the I/O and PLC process, such as the opening or closing of a gate. PLCs communicate via input pins and output pins, low-level communications links. An input pin tells the PLC the temperature of an industrial boiler, or another state of the industrial system. The output pin handles the physical control of the process, such as the order from a PLC to the industrial equipment to open the gate.

Abbasi says the rootkit manipulates the I/O process. If, for example, a gate must be opened if a boiler temperature reaches 80 degrees Celsius to relieve pressure, the temperature sensor would be connected to the input pin and the rootkit attack could manipulate the temperature values and cause the boiler to overheat and explode, he says. The rootkit basically changes the state of the output pin to that of the input pin, he adds, noting that "in PLCs, the I/O operations are one of the most important tasks." 

The attack is so low-overhead that power-consumption usage monitors wouldn't notice it. "The overhead imposed of our attack outside of kernel is below one percent, which means even those approaches which monitor the power usage of PLC for attack detection will be useless," Abbasi says.

The researchers also plan to show a version of the PLC attack that uses shellcode in their Ghost In The PLC: Designing An Undetectable Programmable Logic Controller Rootkit session at Black Hat.

The underlying weakness exploited by the rootkit attack lies in the PLC hardware, according to the reseaarchers. Abbasi and Hashemi are studying ways to better protect PLCs from such attacks. They are exploring several avenues, from preventing system-level privilege to the PLC to rooting out design flaws in the real-time embedded systems to building a mitigation defense for their attack. 

Related Content:

 

Kelly Jackson Higgins is the Executive Editor of Dark Reading. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
janerose
100%
0%
janerose,
User Rank: Apprentice
9/20/2016 | 9:24:04 AM
Helpful post
Helpful post for the readers thanks for sharing great information.
Mobile Banking Malware Up 50% in First Half of 2019
Kelly Sheridan, Staff Editor, Dark Reading,  1/17/2020
Exploits Released for As-Yet Unpatched Critical Citrix Flaw
Jai Vijayan, Contributing Writer,  1/13/2020
Microsoft to Officially End Support for Windows 7, Server 2008
Kelly Sheridan, Staff Editor, Dark Reading,  1/13/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: This comment is waiting for review by our moderators.
Current Issue
The Year in Security: 2019
This Tech Digest provides a wrap up and overview of the year's top cybersecurity news stories. It was a year of new twists on old threats, with fears of another WannaCry-type worm and of a possible botnet army of Wi-Fi routers. But 2019 also underscored the risk of firmware and trusted security tools harboring dangerous holes that cybercriminals and nation-state hackers could readily abuse. Read more.
Flash Poll
[Just Released] How Enterprises are Attacking the Cybersecurity Problem
[Just Released] How Enterprises are Attacking the Cybersecurity Problem
Organizations have invested in a sweeping array of security technologies to address challenges associated with the growing number of cybersecurity attacks. However, the complexity involved in managing these technologies is emerging as a major problem. Read this report to find out what your peers biggest security challenges are and the technologies they are using to address them.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-7227
PUBLISHED: 2020-01-18
Westermo MRD-315 1.7.3 and 1.7.4 devices have an information disclosure vulnerability that allows an authenticated remote attacker to retrieve the source code of different functions of the web application via requests that lack certain mandatory parameters. This affects ifaces-diag.asp, system.asp, ...
CVE-2019-15625
PUBLISHED: 2020-01-18
A memory usage vulnerability exists in Trend Micro Password Manager 3.8 that could allow an attacker with access and permissions to the victim's memory processes to extract sensitive information.
CVE-2019-19696
PUBLISHED: 2020-01-18
A RootCA vulnerability found in Trend Micro Password Manager for Windows and macOS exists where the localhost.key of RootCA.crt might be improperly accessed by an unauthorized party and could be used to create malicious self-signed SSL certificates, allowing an attacker to misdirect a user to phishi...
CVE-2019-19697
PUBLISHED: 2020-01-18
An arbitrary code execution vulnerability exists in the Trend Micro Security 2019 (v15) consumer family of products which could allow an attacker to gain elevated privileges and tamper with protected services by disabling or otherwise preventing them to start. An attacker must already have administr...
CVE-2019-20357
PUBLISHED: 2020-01-18
A Persistent Arbitrary Code Execution vulnerability exists in the Trend Micro Security 2020 (v160 and 2019 (v15) consumer familiy of products which could potentially allow an attacker the ability to create a malicious program to escalate privileges and attain persistence on a vulnerable system.