Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Attacks/Breaches

8/28/2009
03:52 PM
Connect Directly
Google+
Twitter
RSS
E-Mail
50%
50%

Filtering Network Attacks With A 'Netflix' Method

University of California at Irvine researchers devise new model for blacklisting network attackers

Researchers have come up with a new method of blacklisting spam, distributed denial-of-service (DDoS) attacks, worms, and other network attacks that, in part, was inspired by Netflix's movie ratings recommendation system.

The so-called predictive blacklisting method proposed by University of California-Irvine researchers employs a combination of factors to improve blacklisting, such as trends in the times of attacks, geographical locations and IP address blocks, and any "connections" between the attacker and the victim, such as if an attacker had hit a victim's network before.

The blacklisting method "formalizes the blacklisting problem" when it comes to predicting the sources of attacks, says Athina Markopoulou, an assistant professor at UC-Irvine and a member of the research team.

Markopoulou and her team found that their method improves predictive blacklisting, accurately predicting up to 70 percent of attacks. "The hit-count of our combined method improves the hit-count of the state of the art for every single day," she says. "The improvement, depending on the day, is up to 70 percent, and 57 percent on average."

The method draws from Netflix's prediction system for unknown movie ratings, which uses known movie ratings to draw conclusions. "Our prediction system predicts future attackers based on past security logs," Markopoulou says.

Security experts say this new blacklisting method is mainly theoretical at this point -- there's no code or prototype -- but it could ultimately provide a way to minimize spam and other network-borne malicious traffic.

It's unlikely a mathematical algorithm can consistently predict a hacker's activity, says Robert Graham, CEO of Errata Security.

"[The UC-Irvine researchers] are trying to figure out how to find desktops sending out spam and to blacklist them. This is a filtering technique to cut down the noise," Graham says. "The thing is, they're trying to solve, with math, an issue of how people decide to attack the Net...But, ultimately, hackers do weird stuff. They will constantly do things outside the powers of [a mathematical prediction]. It has value in that it could cut down the noise. But you could never eliminate the noise."

Carey Nachenberg, a Symantec fellow for the security technology and response group, says the method basically sends a subset of blacklists to the potential victim versus a universal blacklist. "This is more academic," he says. "We already have blacklists we distribute to customers...it's not a big problem to have a universal blacklist [for anti-spam or IPS]," he contends.

Markopoulou says the method could be applied to security logs gathered by firewalls and IDSes, for instance, and an enterprise could better defend against attacks using this method. "An accurate blacklist predicts the attack sources that will attack the enterprise in the future. The enterprise can use this blacklist to proactively block these sources or to inspect in more detail traffic coming from those sources," she says.

In their paper (PDF), the researchers provide details about their test methodology and the algorithms they deployed. They tested their algorithms using hundreds of millions of logs from hundreds of networks gathered from a one-month period.

Markopoulou says the next step is for the research team to improve the prediction rate of the blacklisting approach. "Second, we want to understand what an attacker could do to evade our prediction method," she says.

Have a comment on this story? Please click "Discuss" below. If you'd like to contact Dark Reading's editors directly, send us a message. Kelly Jackson Higgins is the Executive Editor of Dark Reading. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Data Privacy Protections for the Most Vulnerable -- Children
Dimitri Sirota, Founder & CEO of BigID,  10/17/2019
Sodinokibi Ransomware: Where Attackers' Money Goes
Kelly Sheridan, Staff Editor, Dark Reading,  10/15/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
7 Threats & Disruptive Forces Changing the Face of Cybersecurity
This Dark Reading Tech Digest gives an in-depth look at the biggest emerging threats and disruptive forces that are changing the face of cybersecurity today.
Flash Poll
2019 Online Malware and Threats
2019 Online Malware and Threats
As cyberattacks become more frequent and more sophisticated, enterprise security teams are under unprecedented pressure to respond. Is your organization ready?
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-18202
PUBLISHED: 2019-10-19
Information Disclosure is possible on WAGO Series PFC100 and PFC200 devices before FW12 due to improper access control. A remote attacker can check for the existence of paths and file names via crafted HTTP requests.
CVE-2019-18209
PUBLISHED: 2019-10-19
templates/pad.html in Etherpad-Lite 1.7.5 has XSS when the browser does not encode the path of the URL, as demonstrated by Internet Explorer.
CVE-2019-18198
PUBLISHED: 2019-10-18
In the Linux kernel before 5.3.4, a reference count usage error in the fib6_rule_suppress() function in the fib6 suppression feature of net/ipv6/fib6_rules.c, when handling the FIB_LOOKUP_NOREF flag, can be exploited by a local attacker to corrupt memory, aka CID-ca7a03c41753.
CVE-2019-18197
PUBLISHED: 2019-10-18
In xsltCopyText in transform.c in libxslt 1.1.33, a pointer variable isn't reset under certain circumstances. If the relevant memory area happened to be freed and reused in a certain way, a bounds check could fail and memory outside a buffer could be written to, or uninitialized data could be disclo...
CVE-2019-4409
PUBLISHED: 2019-10-18
HCL Traveler versions 9.x and earlier are susceptible to cross-site scripting attacks. On the Problem Report page of the Traveler servlet pages, there is a field to specify a file attachment to provide additional problem details. An invalid file name returns an error message that includes the entere...