Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Cloud

10/2/2015
04:25 PM
Connect Directly
Twitter
LinkedIn
RSS
E-Mail
50%
50%

Amazon Downplays New Hack For Stealing Crypto Keys In Cloud

Attack works only under extremely rare conditions, cloud giant says of the latest research.

A team of researchers at the Worcester Polytechnic Institute (WPI) in Massachusetts has developed a proof-of-concept attack for stealing private RSA cryptographic keys from virtual machines hosted in Amazon’s EC2 cloud infrastructure.

Amazon says customers using current software and following security best practices are not vulnerable to the attack, however. The cloud company describes the attack as a complex one that would only work under certain extremely rare, pre-existing conditions involving outdated third-party software. "Further, a patched version of the open source software targeted by this research (Libgcrypt) is publicly available for Amazon EC2 customers," the company said.

In a paper published by the International Association for Cryptologic Research (IACR), the researchers described a technique for locating the physical machine on which a specific VM might be hosted and then using a rogue machine on the same server to steal the crypto keys.

The attack technique is reminiscent of, and builds off, work done six years ago by researchers at MIT and the University of California at San Diego. In that paper, the researchers showed how an attacker could identify the physical server on which a target virtual machine is located in a public cloud infrastructure and then install a rogue VM on the same server to eavesdrop on it.

The WPI researchers said that many of the vulnerabilities that were exploited by the MIT and UC-San Diego researchers six years ago have been closed. Cloud service providers, hypervisor vendors, providers of crypto libraries, and others have fixed many previously existing security holes through patches, they noted.

"Through combined efforts of all involved parties, the bar for performing successful attacks in the cloud is quickly rising," the researchers acknowledged in their paper.

Even so, it's still possible for attackers to detect when a rogue VM is co-located on the same physical server as a target VM, and then use side-channel attacks to recover the RSA decryption keys from it.

The paper references the use of shared resources such as Last Level Caches (LLCs) to detect instances where a target VM and attack VM are co-located on the same server in a cloud infrastructure like Amazon's.

Their method is based on a previously used technique called "prime and probe," involving the use of shared memory caches for establishing communications between VMs on the same physical server. While the hypervisor typically prevents VMs from directly reading the memory of another VM, the Last Level Cache can provide indirect information on another VMs memory usage. The WPI researchers essentially took advantage of this technique to device a new way for extracting RSA keys from a target VM.

"The main takeaway is that these micro-architectural leakages do not only exist, but may be exploited even in the rather noisy environment of public clouds," Thomas Eisenbarth, assistant professor at WPI’s department of electrical and computer engineering, told Dark Reading.

But enterprises that are careful about their software choices should be well-protected. "For example, the most recent versions of OpenSSL and Libgcrypt are designed in such a way that the exploited leakages do no longer occur," he says. "Crypto keys are still safe if users follow security best practices and stick to well-maintained fully-patched crypto libraries."

Yehuda Lindell, chief scientist and co-founder of encryption technology vendor Dyadic says the proof-of-concept developed by the WPI researchers shows how side-channel attacks make it possible for one process to steal a secret key held by another process.

"In order to carry out such an attack in the cloud, you first need to know that you are co-located on the same physical machine as a VM with the target application," Lindell says. "This paper shows new ways of detecting collocation, and then methods for stealing the key using the side channels."

 

Jai Vijayan is a seasoned technology reporter with over 20 years of experience in IT trade journalism. He was most recently a Senior Editor at Computerworld, where he covered information security and data privacy issues for the publication. Over the course of his 20-year ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Oldest First  |  Newest First  |  Threaded View
Blog Voyage
50%
50%
Blog Voyage,
User Rank: Strategist
10/3/2015 | 9:15:16 AM
Y
"But enterprises that are careful about their software choices should be well-protected"

 

Seems legit...
DevSecOps: The Answer to the Cloud Security Skills Gap
Lamont Orange, Chief Information Security Officer at Netskope,  11/15/2019
Attackers' Costs Increasing as Businesses Focus on Security
Robert Lemos, Contributing Writer,  11/15/2019
Human Nature vs. AI: A False Dichotomy?
John McClurg, Sr. VP & CISO, BlackBerry,  11/18/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: -when I told you that our cyber-defense was from another age
Current Issue
Navigating the Deluge of Security Data
In this Tech Digest, Dark Reading shares the experiences of some top security practitioners as they navigate volumes of security data. We examine some examples of how enterprises can cull this data to find the clues they need.
Flash Poll
Rethinking Enterprise Data Defense
Rethinking Enterprise Data Defense
Frustrated with recurring intrusions and breaches, cybersecurity professionals are questioning some of the industrys conventional wisdom. Heres a look at what theyre thinking about.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2011-3350
PUBLISHED: 2019-11-19
masqmail 0.2.21 through 0.2.30 improperly calls seteuid() in src/log.c and src/masqmail.c that results in improper privilege dropping.
CVE-2011-3352
PUBLISHED: 2019-11-19
Zikula 1.3.0 build #3168 and probably prior has XSS flaw due to improper sanitization of the 'themename' parameter by setting default, modifying and deleting themes. A remote attacker with Zikula administrator privilege could use this flaw to execute arbitrary HTML or web script code in the context ...
CVE-2011-3349
PUBLISHED: 2019-11-19
lightdm before 0.9.6 writes in .dmrc and Xauthority files using root permissions while the files are in user controlled folders. A local user can overwrite root-owned files via a symlink, which can allow possible privilege escalation.
CVE-2019-10080
PUBLISHED: 2019-11-19
The XMLFileLookupService in NiFi versions 1.3.0 to 1.9.2 allowed trusted users to inadvertently configure a potentially malicious XML file. The XML file has the ability to make external calls to services (via XXE) and reveal information such as the versions of Java, Jersey, and Apache that the NiFI ...
CVE-2019-10083
PUBLISHED: 2019-11-19
When updating a Process Group via the API in NiFi versions 1.3.0 to 1.9.2, the response to the request includes all of its contents (at the top most level, not recursively). The response included details about processors and controller services which the user may not have had read access to.