Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

9/28/2015
10:30 AM
Anna Chiang
Anna Chiang
Commentary
50%
50%

Deconstructing The Challenges Of Software Assurance For Connected Cars

Ensuring software security in the auto industry will entail careful attention to all aspects of software development: design, coding standards, testing, verification and run-time assurance.

Hacking of cars has become a hot topic. If you have any doubt, consider the extensive coverage of the remote takeover of a Jeep Cherokee by security researchers Charlie Miller and Chris Valasek via a security vulnerability in the car’s UConnect infotainment software.

One part of a solution to a real-world hack may be to separate potential attack points (telematics, Bluetooth and radio) from safety-critical car functions (braking, steering and acceleration). But external communication to connected cars (WiFi car software updates and GPS/sensors for future autonomous cars) will still be necessary in some vehicles.

It’s gotten to a point where almost anything in a modern car that is electronically controlled (GM OnStar app, BMW ConnectedDrive and car key fobs) can and will be hacked unless stringent system and software security design considerations and processes are put in place.

The scale of the problem is enormous. Today, mainstream cars may contain tens of millions of lines of software code executing on over a hundred electronic control units (ECUs). Ensuring software security in the auto industry will entail careful attention to all aspects of software development: design, coding standards, testing, verification, and run-time assurance.

It will also be necessary for the industry to secure communication interfaces (radio, media, wireless, telematics, vehicle-to-vehicle), isolate key functions, monitor for anomalous messages on vehicle networks and guarantee the security of supply-chain components. And, with so many third-party components as well as home-grown code, a robust source code management (SCM) or version control platform will be essential to track and manage source code development and provide detailed audit logs for industry standards compliance (ISO 26262) or as part of fault or accident investigations.  

Even minor bugs have consequences

If a mobile game app crashes due to a software bug, annoyed users may stop using it and download something else. In a car, however, the consequences of a minor software bug can be catastrophic. For example, in 2014 Honda publicly admitted that a software defect in an ECU caused unintended acceleration and recalled 175K hybrid cars.

Software vulnerabilities that occur in “unsafe” languages such as C and C++ (format string attacks, buffer overflows, dangling pointers, and privilege escalation bugs) can also be leveraged by attackers to gain access to sensitive automotive systems. Some automakers have been hesitant to move away from C / C++ because of existing legacy code investments, smaller memory footprint, real-time execution constraints, and the need to write low-level device drivers; although recently, available memory-safe alternatives such as Rust and Ivory show some promise.   

Going forward, software assurance in cars will be even more challenging as automated parking assistance and lane guidance becomes more widely available and self-driving autonomous cars appear on the horizon. Connected cars are also being refreshed more frequently with some vehicle features even being updated via over-the-air firmware updates (Tesla max speed and pseudo-autonomous capabilities), which opens up even more security breach concerns.

Current standards, future needs

Automotive industry software development standards and guidelines such as the Motor Industry Software Reliability Association [MISRA] C /C++ standard) try to prevent the use of known bad coding practices.  Several static analysis tools can also scan source code repositories to catch non-MISRA-compliant code and identify software flaws and potential vulnerabilities. Additional tools can detect policy violations, flow analysis, code reviews and run-time errors to identify memory leaks and buffer overflows during the build and test process.

Perhaps the greatest area of concern still to be addressed is the security of supply chain components. In 2014, Toyota was fined $1.2B by the U.S. government for “hiding safety defects and concealing information” that some believed were software defects in its automotive code called attention to by the technical press. This example demonstrates that auto manufacturers will be ultimately held responsible for failures of any part within their vehicles. It’s no surprise, then, that recently more automakers are issuing auto recalls for software safety or security updates than ever before (Fiat, Jeep and Tesla). 

But most ECUs and other components come from third-party suppliers as a “black box” built to auto manufacturers’ requirements and give little visibility into how the hardware and software was developed. Those manufacturers now need to be intimately familiar with every component and version of the software running in their cars that they developed or came from their software supply chain.

Combined with rigorous design for systems isolation, secure software development in automotive systems needs to be a top priority for automakers. Using the right, standards-compliant, modern software development, test, verification and SCM practices is critical for delivering safe and reliable products rapidly in today’s ultra-competitive modern car market. 

Before joining Perforce as the marketing lead for Helix Threat Detection products, Anna did product marketing for BlueRISC, a security company which provides threat detection, endpoint security and forensic analysis products that identify software vulnerabilities and malware ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
RyanSepe
50%
50%
RyanSepe,
User Rank: Ninja
9/28/2015 | 11:09:08 AM
Device Token
To increase security behind smart updating for vehicles a physical device is crucial. The security behind the updates would increase ten fold if before installing them you needed to plug in the device or have the device in close proximity to ensure you are the owner of the car applying the updates. Even then you would need to ensure that updates could only come from a trusted source.

There will still be inherent vulnerabilities as there always are with the IoT but this will help to minimize the vulnerability footprint.
Data Leak Week: Billions of Sensitive Files Exposed Online
Kelly Jackson Higgins, Executive Editor at Dark Reading,  12/10/2019
Intel Issues Fix for 'Plundervolt' SGX Flaw
Kelly Jackson Higgins, Executive Editor at Dark Reading,  12/11/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
The Year in Security: 2019
This Tech Digest provides a wrap up and overview of the year's top cybersecurity news stories. It was a year of new twists on old threats, with fears of another WannaCry-type worm and of a possible botnet army of Wi-Fi routers. But 2019 also underscored the risk of firmware and trusted security tools harboring dangerous holes that cybercriminals and nation-state hackers could readily abuse. Read more.
Flash Poll
Rethinking Enterprise Data Defense
Rethinking Enterprise Data Defense
Frustrated with recurring intrusions and breaches, cybersecurity professionals are questioning some of the industrys conventional wisdom. Heres a look at what theyre thinking about.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-5252
PUBLISHED: 2019-12-14
There is an improper authentication vulnerability in Huawei smartphones (Y9, Honor 8X, Honor 9 Lite, Honor 9i, Y6 Pro). The applock does not perform a sufficient authentication in a rare condition. Successful exploit could allow the attacker to use the application locked by applock in an instant.
CVE-2019-5235
PUBLISHED: 2019-12-14
Some Huawei smart phones have a null pointer dereference vulnerability. An attacker crafts specific packets and sends to the affected product to exploit this vulnerability. Successful exploitation may cause the affected phone to be abnormal.
CVE-2019-5264
PUBLISHED: 2019-12-13
There is an information disclosure vulnerability in certain Huawei smartphones (Mate 10;Mate 10 Pro;Honor V10;Changxiang 7S;P-smart;Changxiang 8 Plus;Y9 2018;Honor 9 Lite;Honor 9i;Mate 9). The software does not properly handle certain information of applications locked by applock in a rare condition...
CVE-2019-5277
PUBLISHED: 2019-12-13
Huawei CloudUSM-EUA V600R006C10;V600R019C00 have an information leak vulnerability. Due to improper configuration, the attacker may cause information leak by successful exploitation.
CVE-2019-5254
PUBLISHED: 2019-12-13
Certain Huawei products (AP2000;IPS Module;NGFW Module;NIP6300;NIP6600;NIP6800;S5700;SVN5600;SVN5800;SVN5800-C;SeMG9811;Secospace AntiDDoS8000;Secospace USG6300;Secospace USG6500;Secospace USG6600;USG6000V;eSpace U1981) have an out-of-bounds read vulnerability. An attacker who logs in to the board m...