Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT/Embedded Security //

Command and Control

2/9/2018
09:30 AM
Larry Loeb
Larry Loeb
Larry Loeb
50%
50%

Forcepoint Finds New Malware Hiding in PoS Machines

The malware, which resembles a LogMeIn service pack, can capture data from credit cards and then reproduce the card or other information. However, Forcepoint believes this strain of malware is still under development.

Forcepoint researchers have found a new strain of Point of Sale (PoS) malware that hides its activities by mimicking the traffic generated by a legitimate remote login service that is used to manage PCs and other systems.

The PoS strain has no connection to the LogMeIn service, which is only used as a decoy, according to research published by Robert Neumann and Luke Somerville on February 8.

Named UDPoS by the Forcepoint team, the malware appears to be a LogMeIn service pack which generated notable amounts of "unusual" DNS requests. This UDP-based DNS traffic is why the strain has that moniker.

PoS malware is looking for the information present in magnetic stripes on a credit card, usually aggregating them until they are sent to a command-and-control (C&C) server. This information may be used to duplicate the card, or perform other types of financial skullduggery.

(Source: Wikipedia)
(Source: Wikipedia)

Forcepoint found that the malware, which shows up as logmeinumon.exe, would link to a C&C server that was hosted in Switzerland. It contained a dropper program, as well as self-extracting archives that would extract content to temp directories on the victim hardware.

A LogMeInUpdService directory is first created along with a system service that will enable persistence once created.

The nasty work continues with the creation of a system monitor that has almost the identical structure of the LogMeIn service component. This monitor directs the malware activity in the next stages.

The Forcepoint researchers were struck by how well the fake acted like a legitimate component:

It's compiled by the same Visual Studio build and uses the same string encoding technique: both executables contain only a few identifiable plain-text strings, and instead use a basic encryption and encoding method to hide strings such as the C2 server, filenames, and hard-coded process names.

These techniques make it rather hard to differentiate the two.

The monitor component is a multi-threaded application -- despite its small 88kB size -- creating five different threads after its initialization code is completed. It also carries out anti-AV and anti-VM activity.

During its first run, the malware will run DNS query on the C2 address that is embedded in the code. It also finds out the external IP address of the infected machine using an HTTP GET request.

It will then make a batch file, which will hold the fingerprint of the infected machine. This batch file will have within it the network, system, route and process related information. This data is written to a local file called PCi.jpg and sent to the C2 server via DNS.

The malware will then communicate from this point via one of five DNS messages.

Forcepoint researchers believe that this malware strain remains under development. Writing to disk rather than keeping things in-memory, while leaving traces, and the methods of fingerprinting and data collection do not seem optimized. Yet, these techniques are serviceable and functional.

Consumers may not be able to help in mitigation, since the PoS does not run on their own personal hardware. Keeping aware of their credit card activity may show an outbreak after it happens, but the merchant must also keep an eye on their machines as well.

Related posts:

— Larry Loeb has written for many of the last century's major "dead tree" computer magazines, having been, among other things, a consulting editor for BYTE magazine and senior editor for the launch of WebWeek.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Edge-DRsplash-10-edge-articles
I Smell a RAT! New Cybersecurity Threats for the Crypto Industry
David Trepp, Partner, IT Assurance with accounting and advisory firm BPM LLP,  7/9/2021
News
Attacks on Kaseya Servers Led to Ransomware in Less Than 2 Hours
Robert Lemos, Contributing Writer,  7/7/2021
Commentary
It's in the Game (but It Shouldn't Be)
Tal Memran, Cybersecurity Expert, CYE,  7/9/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
How Enterprises are Attacking the Cybersecurity Problem
Concerns over supply chain vulnerabilities and attack visibility drove some significant changes in enterprise cybersecurity strategies over the past year. Dark Reading's 2021 Strategic Security Survey showed that many organizations are staying the course regarding the use of a mix of attack prevention and threat detection technologies and practices for dealing with cyber threats.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2021-42258
PUBLISHED: 2021-10-22
BQE BillQuick Web Suite 2018 through 2021 before 22.0.9.1 allows SQL injection for unauthenticated remote code execution, as exploited in the wild in October 2021 for ransomware installation. SQL injection can, for example, use the txtID (aka username) parameter. Successful exploitation can include ...
CVE-2020-28968
PUBLISHED: 2021-10-22
Draytek VigorAP 1000C contains a stored cross-site scripting (XSS) vulnerability in the RADIUS Setting - RADIUS Server Configuration module. This vulnerability allows attackers to execute arbitrary web scripts or HTML via a crafted payload in the username input field.
CVE-2020-28969
PUBLISHED: 2021-10-22
Aplioxio PDF ShapingUp 5.0.0.139 contains a buffer overflow which allows attackers to cause a denial of service (DoS) via a crafted PDF file.
CVE-2020-36485
PUBLISHED: 2021-10-22
Portable Ltd Playable v9.18 was discovered to contain an arbitrary file upload vulnerability in the filename parameter of the upload module. This vulnerability allows attackers to execute arbitrary code via a crafted JPEG file.
CVE-2020-36486
PUBLISHED: 2021-10-22
Swift File Transfer Mobile v1.1.2 and below was discovered to contain a cross-site scripting (XSS) vulnerability via the 'path' parameter of the 'list' and 'download' exception-handling.