Threat Intelligence

5/10/2017
10:30 AM
Derek Manky
Derek Manky
Commentary
Connect Directly
LinkedIn
RSS
E-Mail vvv
50%
50%

Extreme Makeover: AI & Network Cybersecurity

In the future, artificial intelligence will constantly adapt to the growing attack surface. Today, we are still connecting the dots.

Traditional network architectures are incapable of meeting the demands of new digital paradigms involving enormous volumes of raw and processed data moving between our devices, our work, community and home networks. In this two-part series, we explore how next-gen network technology can use artificial intelligence and machine learning to become more flexible and automated.

Security strategies need to undergo a radical evolution. Tomorrow’s security devices will need to see and interoperate with each other to recognize changes in the networked environment, anticipate new risks and automatically update and enforce policies. The devices must be able to monitor and share critical information and synchronize responses to detected threats.

Sound futuristic? Not really. One nascent technology that has been getting a lot of attention recently lays the foundation for such an automated approach. It’s called Intent-Based Network Security (IBNS). IBNS provides pervasive visibility across the entire distributed network, and enables integrated security solutions to automatically adapt to changing network configurations and shifting business needs with a synchronized response to threats.

These solutions can also dynamically partition network segments, isolate affected devices and remove malware. New security measures and countermeasures can also be provisioned or updated automatically as new devices, workloads, and services are deployed or moved from anywhere to anywhere in the network, from endpoints to the cloud. Tightly integrated and automated security enables a comprehensive threat response far greater than the sum of the individual security solutions protecting the network.

Artificial intelligence and machine learning are becoming significant allies in cybersecurity. Machine learning will be bolstered by data-heavy Internet of Things devices and predictive applications to help safeguard the network. But securing these “things” and that data, which are ripe targets or entry points for attackers, is a challenge in its own right.

The Quality of Intelligence
One of the biggest challenges of using AI and machine learning lies in the caliber of intelligence. Cyber threat intelligence today is highly prone to false positives due to the volatile nature of the IoT. Threats can change within seconds; a machine can be clean one second, infected the next and back to clean again, full cycle, in very low latency.

Enhancing the quality of threat intelligence is critically important as IT teams pass more control to artificial intelligence to do the work that humans otherwise would do. This is a trust exercise, and therein lies the unique challenge. We as an industry cannot pass full control to machine automation, but we need to balance operational control with critical exercise that can escalate up to humans. This working relationship will truly make AI and machine learning applications for cybersecurity defense effective.

Because a cybersecurity skills gap persists, products and services must be built with greater automation to correlate threat intelligence to determine the level of risk and to automatically synchronize a coordinated response to threats. Often, by the time administrators try to tackle a problem themselves, it is often too late, causing an even bigger issue, or more work to be done. This can be handled automatically using direct intelligence sharing between detection and prevention products, or with assisted mitigation, which is a combination of people and technology working together. Automation can also allow security teams to put more time back into business-critical efforts instead of some of the more routine cybersecurity management efforts.

In the future, AI in cybersecurity will constantly adapt to the growing attack surface. Today, we are connecting the dots, sharing data and applying that data to systems. Humans are making these complex decisions, which require intelligent correlation through human intelligence. In the future, a mature AI system could be capable of making complex decisions on its own.

What is not attainable is full automation; that is, passing 100 percent of control to the machines to make all decisions at any time. Humans and machines must work together.

In part two, Artificial Intelligence: Cybersecurity Friend or Foe?, we highlight the flipside to the AI coin, and how cybercriminals are using it to build smarter malware.

Related Content:

Derek Manky formulates security strategy with more than 15 years of cyber security experience behind him. His ultimate goal to make a positive impact in the global war on cybercrime. Manky provides thought leadership to industry, and has presented research and strategy ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Hacked IV Pumps and Digital Smart Pens Can Lead to Data Breaches
Dawn Kawamoto, Associate Editor, Dark Reading,  12/4/2017
Tips for Writing Better Infosec Job Descriptions
Kelly Sheridan, Associate Editor, Dark Reading,  12/4/2017
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: This comment is waiting for review by our moderators.
Current Issue
Managing Cyber-Risk
An online breach could have a huge impact on your organization. Here are some strategies for measuring and managing that risk.
Flash Poll
[Strategic Security Report] How Enterprises Are Attacking the IT Security Problem
[Strategic Security Report] How Enterprises Are Attacking the IT Security Problem
Enterprises are spending more of their IT budgets on cybersecurity technology. How do your organization's security plans and strategies compare to what others are doing? Here's an in-depth look.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2017-0290
Published: 2017-05-09
NScript in mpengine in Microsoft Malware Protection Engine with Engine Version before 1.1.13704.0, as used in Windows Defender and other products, allows remote attackers to execute arbitrary code or cause a denial of service (type confusion and application crash) via crafted JavaScript code within ...

CVE-2016-10369
Published: 2017-05-08
unixsocket.c in lxterminal through 0.3.0 insecurely uses /tmp for a socket file, allowing a local user to cause a denial of service (preventing terminal launch), or possibly have other impact (bypassing terminal access control).

CVE-2016-8202
Published: 2017-05-08
A privilege escalation vulnerability in Brocade Fibre Channel SAN products running Brocade Fabric OS (FOS) releases earlier than v7.4.1d and v8.0.1b could allow an authenticated attacker to elevate the privileges of user accounts accessing the system via command line interface. With affected version...

CVE-2016-8209
Published: 2017-05-08
Improper checks for unusual or exceptional conditions in Brocade NetIron 05.8.00 and later releases up to and including 06.1.00, when the Management Module is continuously scanned on port 22, may allow attackers to cause a denial of service (crash and reload) of the management module.

CVE-2017-0890
Published: 2017-05-08
Nextcloud Server before 11.0.3 is vulnerable to an inadequate escaping leading to a XSS vulnerability in the search module. To be exploitable a user has to write or paste malicious content into the search dialogue.