Lethal Dosage of Cybercrime: Hacking the IV Pump
At DEF CON, a researcher demonstrated how to attack a popular model of infusion pump used in major hospitals around the world.
DEF CON - Las Vegas - The dangers of medical device hacking can be severe, and potentially lethal, when conducted by cybercriminals with the means and motivation to cause physical harm.
Dan Regalado, principal security researcher for IoT firm Zingbox, demonstrated how an attacker could break into a medical infusion pump during a presentation at DEF CON's IoT Village. IV pumps are sensitive and pricey medical devices used to deliver medications, fluids, blood, and blood products to adult, pediatric, and neonatal patients.
Infusion pumps present a growing attack surface for hackers to break into at hospitals. The market is expected to hit $10.84 billion by 2021, he said, citing a "Market and Markets" forecast.
Why would someone hack an IV pump? There are several reasons, Regalado pointed out. If successful, an attacker could steal personally identifiable information (PII), hijack hospital devices and demand ransom, corrupt the device in a denial-of-service attack, or use the pump as an entryway into the broader corporate network.
For his educational research, Regalado chose to break into the Alaris PC Unit and IV Pump module manufactured by Bectron. The pump is a market-leading brand used at several hospitals around the world, he said.
His presentation dug into details of the device's internal components and their vulnerabilities.
Flash FX, the generic block device driver, links the system and hardware. It lets the OS access the internal flash memory as if it were a hard drive or RAM disk, and stores sensitive information like credentials for accessing network systems. The compact Flash card inside the pump, used to boot the ENEA OSE system, stores patient profiles and is easy to retrieve and alter.
Regalado demonstrated onstage how an attacker could bypass the image integrity check, and gain access to the restricted configuration by changing the machine's PIN number.
"You can modify the integrity of the system," he explained. "The infusion pump will do whatever you want."
From there, a hacker could conduct a man-in-the-middle attack by impersonating the access point and server to manipulate pumps. Each hospital can have up to 400-1,000 pumps, said Regalado, each of which could have its settings configured to administer dangerously low or high dosages to its patient.
An attacker could also use this level of access to reconfigure the pump's network properties and overwrite the internal flash with new wifi configurations, or execute commands from the internal shell to destroy critical files or collect sensitive data.
"We need to assume a physical attack will happen and work towards asset protection," said Regalado, adding that internal attacks are more common than external ones.
While this demonstration required physical access to the pump, he warned remote attacks would be next. Regalado also noted that the vendor was notified of the pump's vulnerabilities and committed to a 30-60 day policy to address them.
His presentation ties in with the broader growth of cybercrime on healthcare organizations. Major cyberattacks on the industry grew 63%. Researchers discovered an increase in medical device hijacking, which involves the use of backdoors in medical devices to load malware tools and exfiltrate intellectual property.
The same year, a record-breaking 328 healthcare businesses reported data breaches. Experts say attackers are becoming more confident as breaches are increasingly publicized. It's becoming clearer that healthcare targets aren't as security-savvy as once believed, and the industry has consistently seen more breaches year after year.
Related Content:
About the Author
You May Also Like
Cybersecurity Day: How to Automate Security Analytics with AI and ML
Dec 17, 2024The Dirt on ROT Data
Dec 18, 2024