Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

1/22/2018
06:50 PM
Connect Directly
Twitter
LinkedIn
RSS
E-Mail
50%
50%

Satori Botnet Malware Now Can Infect Even More IoT Devices

Latest version targets systems running ARC processors.

The authors of the Satori IoT malware family have dramatically increased their pool of bot recruits for attack botnets with a new version of the tool targeting systems running ARC processors.

The latest Satori variant, the fourth since the malware first surfaced in Dec. 2017, appears to be the first aimed specifically at ARC chipsets, DDoS attack mitigation vendor Arbor Networks said in an advisory this week.   

ARC processors are 32-bit power-efficient CPUs that are used in a wide range of applications including automotive, industrial, and IoT. More than 1.5 billion embedded systems containing ARC cores ship every year, including electronic steering controls and infotainment systems in cars, as well as personal fitness bands and digital TV set tops, and smart thermostats.

Like other Satori variants, the newest one also leverages the Mirai code base. Like Mirai, it is designed to propagate through credential scanning, meaning the malware can potentially infect any ARC device with default and easily guessable telnet usernames and passwords. The previous Satori variant specifically targeted Huawei routers.

It's hard to say which specific ARC-based devices the Satori authors are hoping to target because of the huge installed base of systems, says Peter Arzamendi, security researcher at NETSCOUT, Arbor's Security Engineering & Response Team. 

However, "botnets that target new and novel types of IoT devices is the new normal," he says. "With the proliferation of IoT and BYOD, enterprises will need to understand how to both defend these devices and be able to respond when they are compromised," Arzamendi says.

Support for ARC processors allows Satori variants to target a wide range of systems including those based on Intel, ARM, MIPS, PPC, and SuperH processor architectures. All of the variants differ slightly in targeting and in capabilities.

Building malware for a new processor architecture like ARC is not too difficult an endeavor and only requires a compiler that supports the architecture, and some open source tools to help with porting code, says Arzamendi.

"IoT [botnets] depend on compromising as many devices as possible. Threat actors will have less competition by focusing on new types of devices that others are not targeting," he says of the latest Satori development.

On Defense

With DDoS-capable malware available for a wider range of Internet-connected devices than when Mirai first surfaced in late 2016, network operators need to review their defense strategies, according to Arbor.

In addition to protections against DDoS attacks, businesses need to ensure their own IoT network and device is not being used in DDoS attacks, Arbor said. "The collateral damage due to scanning and outbound DDoS attacks alone can be crippling if network architectural and operational best current practices are not proactively implemented," the security vendor said in its advisory.

Adam Meyers, vice president of intelligence at CrowdStrike, says organizations need to invest in DDoS protection if they haven't done so already, and ensure they know what to do in the event of an attack. Tabletop exercises are a great way to ensure that all stakeholders are in lockstep when an attack does occur, he says.

"Protecting against IoT botnets will become increasingly difficult as IoT devices age in place," Meyers says. "A bulk of these devices is going to remain deployed as long as they continue to function, and patching will not be widespread. In addition, new vulnerabilities in some of these platforms will continue to be identified."

In addition to DDoS attacks, enterprises should also be aware of the fact that IoT botnets can be used for other purposes such as: creating a non-attribution proxy network for criminal enterprises, distributing spam, and hosting Web content for phishing.

Related Content:

 

Jai Vijayan is a seasoned technology reporter with over 20 years of experience in IT trade journalism. He was most recently a Senior Editor at Computerworld, where he covered information security and data privacy issues for the publication. Over the course of his 20-year ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Threaded  |  Newest First  |  Oldest First
COVID-19: Latest Security News & Commentary
Dark Reading Staff 9/25/2020
Hacking Yourself: Marie Moe and Pacemaker Security
Gary McGraw Ph.D., Co-founder Berryville Institute of Machine Learning,  9/21/2020
Startup Aims to Map and Track All the IT and Security Things
Kelly Jackson Higgins, Executive Editor at Dark Reading,  9/22/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-15208
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can ...
CVE-2020-15209
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one....
CVE-2020-15210
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and ...
CVE-2020-15211
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices f...
CVE-2020-15212
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `outpu...