Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

6/12/2018
01:00 PM
Connect Directly
Google+
Twitter
RSS
E-Mail
50%
50%

New Hack Weaponizes the Web Cache

Researcher exploits design flaws in Web caching to take control of popular websites, frameworks - and the Mozilla Firefox browser infrastructure.

A newly discovered attack forces Web cache servers to deliver malicious content to website visitors – and also exposes a major security hole in Mozilla's Firefox browser infrastructure.

James Kettle, head of research at PortSwigger Web Security, exploited security weaknesses in the design of website infrastructure to hack the Web caches of major sites and platforms: a US government agency, a popular cloud platform provider, a hosting platform provider, a software product, a video game, an investment firm's investor information, and some online stores.

"It's sort of a design flaw in the way caching and websites work," Kettle says of the security issues. "It's not specific to any given technology or any given cache."

In his research, Kettle also stumbled on a flaw in an API used in Firefox's infrastructure that allowed him to take partial control of tens of millions of browsers using his cache-attack method. "I call it a low-fat botnet because I didn't have complete control over Firefox, but I had a bit of control," he says.

Kettle is holding back much of the secret sauce of the Web-caching hack as well as his Web targets until his Black Hat USA talk in August. But he does say that with his attack, he can force a cache into behaving in an unsavory way without directly targeting it.

It basically works like this: Kettle sends a request to the website with his payload. "The website then replies with something potentially dangerous ... and the cache takes that, so then anyone who visits after that gets hit by the exploit," he says.

Web caches sit in front of websites and serve up stored content rather than all of the delivery coming via the live website. Kettle says the complexity of those caches and content-delivery networks built around many of today's Web applications can actually leave them open to abuse.

Previous research in Web cache security has encompassed injecting headers, or tricking the cache into saving and sharing sensitive data, Kettle says. His attack differs because it forces the cache to serve up exploits to website visitors, he notes.

An attacker could use it to plant malware that steals passwords or payment-card information from a website when visitors came to the site. The attack could also be employed to deface a website or redirect a visitor to a malicious site.

Firefox Botnet
With Firefox, Kettle employed his cache-poisoning attack against the infrastructure behind the browser that checks for and sends application and plug-in updates as well as URLs of dangerous websites to block, for example. "I found by accident ... that I was able to use cache poisoning to effectively input" some limited commands to Firefox browser users worldwide, he says. "If you opened Firefox, I got control of it."  

Mozilla fixed the flaw within 24 hours of his reporting it, in a Jan. 25 update.

When Firefox starts up, it sends a request to the Mozilla infrastructure for updates and other information. "By using cache poisoning, I could control the response to that message," Kettle says. That could allow an attacker to install certain extensions and corral Firefox browsers into a botnet to wage distributed denial-of-service (DDoS) attacks, for example.

Kettle says abusing the Firefox flaw alone would be less useful to an attacker than chaining an attack with another exploit and gaining full control of the browsers.

As of this posting, Mozilla had not responded to a request for comment on Kettle's research.

At Black Hat Kettle plans to release the open-source utility he created for his research, an adapted Burp Suite tool that scans Web infrastructures for cache-poisoning weaknesses, he says.

Related Content:

Top industry experts will offer a range of information and insight on who the bad guys are – and why they might be targeting your enterprise. Click for more information

Kelly Jackson Higgins is the Executive Editor of Dark Reading. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 9/25/2020
Hacking Yourself: Marie Moe and Pacemaker Security
Gary McGraw Ph.D., Co-founder Berryville Institute of Machine Learning,  9/21/2020
Startup Aims to Map and Track All the IT and Security Things
Kelly Jackson Higgins, Executive Editor at Dark Reading,  9/22/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-15208
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can ...
CVE-2020-15209
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one....
CVE-2020-15210
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and ...
CVE-2020-15211
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices f...
CVE-2020-15212
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `outpu...