Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

9/20/2017
05:55 PM
Connect Directly
Twitter
LinkedIn
Google+
RSS
E-Mail
50%
50%

Cisco SMI Still Exposing Network Switches Online

The high number of exposed and vulnerable devices online has remained largely unchanged since researchers began exploring SMI in 2010.

Cisco's Smart Install (SMI) protocol is leaving network switches exposed on the public Internet at a rate that has remained largely unchanged since researchers began digging for SMI flaws when it was first released in 2010, a new study shows.

SMI provides configuration and image management for Cisco switches and uses a combination of DHCP, TFTP, and a proprietary TCP protocol to help businesses deploy and run them.

Researchers at Rapid7 recently reassessed the public Internet for SMI exposure. Their goal was to highlight changes since the initial publication of SMI research and learn more about why SMI was being exposed insecurely.

Since its debut, several SMI flaws have been discovered and disclosed including CVE-2011-3271, which led to remote code execution, and denial of service issues CVE-2012-0385, CVE-2013-1146, CVE-2016-1349, and CVE-2016-6385.

In 2016, researchers have found a number of new SMI security issues. Experts from Tenable, Trustwave SpiderLabs, and Digital Security presented at the 2016 Zeronights security conference to disclose several problems with SMI that left the entire switch open for compromise if a user left SMI exposed and unpatched, neglecting Cisco's recommendations for securing it.

Each SMI-related security advisory published by Cisco has recommended disabling SMI unless it's needed. The company has offered coverage for SMI abuse, updated the documentation to secure SMI, and released a scanning tool so customers can know if they're affected by SMI problems. It also released SMI-related hardening fixes.

In its new July 2017 reassessment of the public Internet, Rapid7 used a method similar to Zeronights. The Rapid7 Labs' Sonar scan found a 13% decrease in the number of exposed SMI endpoints compared with the Zeronights research. Countries with a large number of IPv4 IPs and large network infrastructure are the most exposed. The United States was highest with 56,605 nodes exposed, or 26.3% of the total.

"The issue with exposing SMI is that it gives an attacker complete control over the configuration of the target switch," says Jon Hart, senior security researcher at Rapid7. At the minimum, he explains, there is the possibility of information disclosure, which is likely to include authentication data like usernames, passwords/hashes, firewall/ACL rules, and more.

On the more extreme end, he continues, SMI exposure could let an attacker completely compromise the target switch and load arbitrary switch operating system code. They could execute code of their choosing and modify, redirect, or intercept switch transit traffic.

"Compromising a switch puts an attacker in a very advantageous position offensively," says Hart. "Being closer network-wise to additional target devices that connect to or through the compromised switch affords an attacker the ability to perform attacks against these additional targets."

Businesses can protect themselves by updating to newer versions of the relevant code powering these switches, which will likely remove any current risk of being compromised via SMI, he says. It's an improvement from several years ago, when organizations could have been running and exposing SMI without knowing it.

Related Content:

Join Dark Reading LIVE for two days of practical cyber defense discussions. Learn from the industry’s most knowledgeable IT security experts. Check out the INsecurity agenda here.

Kelly Sheridan is the Staff Editor at Dark Reading, where she focuses on cybersecurity news and analysis. She is a business technology journalist who previously reported for InformationWeek, where she covered Microsoft, and Insurance & Technology, where she covered financial ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Limited-Time Free Offers to Secure the Enterprise Amid COVID-19
Curtis Franklin Jr., Senior Editor at Dark Reading,  3/31/2020
COVID-19: Latest Security News & Commentary
Dark Reading Staff 4/3/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
6 Emerging Cyber Threats That Enterprises Face in 2020
This Tech Digest gives an in-depth look at six emerging cyber threats that enterprises could face in 2020. Download your copy today!
Flash Poll
State of Cybersecurity Incident Response
State of Cybersecurity Incident Response
Data breaches and regulations have forced organizations to pay closer attention to the security incident response function. However, security leaders may be overestimating their ability to detect and respond to security incidents. Read this report to find out more.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-8096
PUBLISHED: 2020-04-07
Untrusted Search Path vulnerability in Bitdefender High-Level Antimalware SDK for Windows allows an attacker to load third party code from a DLL library in the search path. This issue affects: Bitdefender High-Level Antimalware SDK for Windows versions prior to 3.0.1.204 .
CVE-2020-11586
PUBLISHED: 2020-04-06
An XXE issue was discovered in CIPPlanner CIPAce 9.1 Build 2019092801. An unauthenticated attacker can make an API request that contains malicious XML DTD data.
CVE-2020-11587
PUBLISHED: 2020-04-06
An issue was discovered in CIPPlanner CIPAce 9.1 Build 2019092801. An unauthenticated attacker can make an API request and get the content of ETL Processes running on the server.
CVE-2020-11589
PUBLISHED: 2020-04-06
An Insecure Direct Object Reference issue was discovered in CIPPlanner CIPAce 9.1 Build 2019092801. An unauthenticated attacker can make a GET request to a certain URL and obtain information that should be provided to authenticated users only.
CVE-2020-11590
PUBLISHED: 2020-04-06
An issue was discovered in CIPPlanner CIPAce 9.1 Build 2019092801. An unauthenticated attacker can make an HTTP GET request to HealthPage.aspx and obtain the internal server name.