Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Threat Intelligence

11/22/2017
10:00 AM
50%
50%

Samsung Pay Leaks Mobile Device Information

Researcher at Black Hat Europe will show how Samsung Pay's security falls short and ways attackers could potentially bypass it.

Mobile users installing Samsung Pay on their devices could have sensitive information stolen by attackers due to a newly discovered weakness in the app that leaks the digital tokens that secure transactions and other technical information such as network traffic logs.

An attacker could capture this information without having to authenticate to the device, according to a Tencent researcher who goes by the name of HC, who at Black Hat Europe 2017 next month will present his findings on the Samsung Pay security weaknesses.

"This information can let the attacker learn much more about the internal mechanisms of Samsung Pay and allow them to use it to their advantage to go even deeper into Samsung Pay," HC says.

The attacker, for example, could take the information and use it to view communication between users and their banks in plain text. With enough information, HC notes, an attacker could create another token to withdraw money from users' bank accounts.

Samsung Pay's tokens are unique alphanumeric identifiers generated via algorithms and designed to eliminate the need to use a credit card or debit card number.

"This is not a vulnerability in Samsung Pay, but a mistake in Samsung Pay's app. The mistake is you don't need privileges to get access to the phone log system," says HC, who has notified Samsung about the issue.

HC conducted his research using a Samsung Galaxy S6 but says all Samsung Galaxy smartphones that feature Samsung Pay may be at risk.

The purpose of HC's presentation is to discuss Samsung Pay's security and how to generate a token without the device being physically present, which is different than a 2016 Black Hat Samsung Pay demonstration by another security researcher, HC notes.

Although HC in his research had aimed to generate a token without a Samsung Galaxy device, he acknowledged he was not able to achieve that goal because of the strength of the encrypted traffic and difficulty in accessing the secure chip to crack the encrypted key.

"It is possible to compromise Samsung Pay with the right tools and skills," HC says, noting in his particular case the desired tools were not immediately available.

Related Content:

 

Join Dark Reading LIVE for two days of practical cyber defense discussions. Learn from the industry’s most knowledgeable IT security experts. Check out the INsecurity agenda here.

Dawn Kawamoto is an Associate Editor for Dark Reading, where she covers cybersecurity news and trends. She is an award-winning journalist who has written and edited technology, management, leadership, career, finance, and innovation stories for such publications as CNET's ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 9/21/2020
Hacking Yourself: Marie Moe and Pacemaker Security
Gary McGraw Ph.D., Co-founder Berryville Institute of Machine Learning,  9/21/2020
Startup Aims to Map and Track All the IT and Security Things
Kelly Jackson Higgins, Executive Editor at Dark Reading,  9/22/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-25596
PUBLISHED: 2020-09-23
An issue was discovered in Xen through 4.14.x. x86 PV guest kernels can experience denial of service via SYSENTER. The SYSENTER instruction leaves various state sanitization activities to software. One of Xen's sanitization paths injects a #GP fault, and incorrectly delivers it twice to the guest. T...
CVE-2020-25597
PUBLISHED: 2020-09-23
An issue was discovered in Xen through 4.14.x. There is mishandling of the constraint that once-valid event channels may not turn invalid. Logic in the handling of event channel operations in Xen assumes that an event channel, once valid, will not become invalid over the life time of a guest. Howeve...
CVE-2020-25598
PUBLISHED: 2020-09-23
An issue was discovered in Xen 4.14.x. There is a missing unlock in the XENMEM_acquire_resource error path. The RCU (Read, Copy, Update) mechanism is a synchronisation primitive. A buggy error path in the XENMEM_acquire_resource exits without releasing an RCU reference, which is conceptually similar...
CVE-2020-25599
PUBLISHED: 2020-09-23
An issue was discovered in Xen through 4.14.x. There are evtchn_reset() race conditions. Uses of EVTCHNOP_reset (potentially by a guest on itself) or XEN_DOMCTL_soft_reset (by itself covered by XSA-77) can lead to the violation of various internal assumptions. This may lead to out of bounds memory a...
CVE-2020-25600
PUBLISHED: 2020-09-23
An issue was discovered in Xen through 4.14.x. Out of bounds event channels are available to 32-bit x86 domains. The so called 2-level event channel model imposes different limits on the number of usable event channels for 32-bit x86 domains vs 64-bit or Arm (either bitness) ones. 32-bit x86 domains...