Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Threat Intelligence

11/22/2017
10:00 AM
50%
50%

Samsung Pay Leaks Mobile Device Information

Researcher at Black Hat Europe will show how Samsung Pay's security falls short and ways attackers could potentially bypass it.

Mobile users installing Samsung Pay on their devices could have sensitive information stolen by attackers due to a newly discovered weakness in the app that leaks the digital tokens that secure transactions and other technical information such as network traffic logs.

An attacker could capture this information without having to authenticate to the device, according to a Tencent researcher who goes by the name of HC, who at Black Hat Europe 2017 next month will present his findings on the Samsung Pay security weaknesses.

"This information can let the attacker learn much more about the internal mechanisms of Samsung Pay and allow them to use it to their advantage to go even deeper into Samsung Pay," HC says.

The attacker, for example, could take the information and use it to view communication between users and their banks in plain text. With enough information, HC notes, an attacker could create another token to withdraw money from users' bank accounts.

Samsung Pay's tokens are unique alphanumeric identifiers generated via algorithms and designed to eliminate the need to use a credit card or debit card number.

"This is not a vulnerability in Samsung Pay, but a mistake in Samsung Pay's app. The mistake is you don't need privileges to get access to the phone log system," says HC, who has notified Samsung about the issue.

HC conducted his research using a Samsung Galaxy S6 but says all Samsung Galaxy smartphones that feature Samsung Pay may be at risk.

The purpose of HC's presentation is to discuss Samsung Pay's security and how to generate a token without the device being physically present, which is different than a 2016 Black Hat Samsung Pay demonstration by another security researcher, HC notes.

Although HC in his research had aimed to generate a token without a Samsung Galaxy device, he acknowledged he was not able to achieve that goal because of the strength of the encrypted traffic and difficulty in accessing the secure chip to crack the encrypted key.

"It is possible to compromise Samsung Pay with the right tools and skills," HC says, noting in his particular case the desired tools were not immediately available.

Related Content:

 

Join Dark Reading LIVE for two days of practical cyber defense discussions. Learn from the industry’s most knowledgeable IT security experts. Check out the INsecurity agenda here.

Dawn Kawamoto is an Associate Editor for Dark Reading, where she covers cybersecurity news and trends. She is an award-winning journalist who has written and edited technology, management, leadership, career, finance, and innovation stories for such publications as CNET's ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
News
Former CISA Director Chris Krebs Discusses Risk Management & Threat Intel
Kelly Sheridan, Staff Editor, Dark Reading,  2/23/2021
Edge-DRsplash-10-edge-articles
Security + Fraud Protection: Your One-Two Punch Against Cyberattacks
Joshua Goldfarb, Director of Product Management at F5,  2/23/2021
News
Cybercrime Groups More Prolific, Focus on Healthcare in 2020
Robert Lemos, Contributing Writer,  2/22/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win an Amazon Gift Card! Click Here
Latest Comment: This comment is waiting for review by our moderators.
Current Issue
2021 Top Enterprise IT Trends
We've identified the key trends that are poised to impact the IT landscape in 2021. Find out why they're important and how they will affect you today!
Flash Poll
Building the SOC of the Future
Building the SOC of the Future
Digital transformation, cloud-focused attacks, and a worldwide pandemic. The past year has changed the way business works and the way security teams operate. There is no going back.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2021-21273
PUBLISHED: 2021-02-26
Synapse is a Matrix reference homeserver written in python (pypi package matrix-synapse). Matrix is an ecosystem for open federated Instant Messaging and VoIP. In Synapse before version 1.25.0, requests to user provided domains were not restricted to external IP addresses when calculating the key va...
CVE-2021-21274
PUBLISHED: 2021-02-26
Synapse is a Matrix reference homeserver written in python (pypi package matrix-synapse). Matrix is an ecosystem for open federated Instant Messaging and VoIP. In Synapse before version 1.25.0, a malicious homeserver could redirect requests to their .well-known file to a large file. This can lead to...
CVE-2021-23345
PUBLISHED: 2021-02-26
All versions of package github.com/thecodingmachine/gotenberg are vulnerable to Server-side Request Forgery (SSRF) via the /convert/html endpoint when the src attribute of an HTML element refers to an internal system file, such as <iframe src='file:///etc/passwd'>.
CVE-2021-21297
PUBLISHED: 2021-02-26
Node-Red is a low-code programming for event-driven applications built using nodejs. Node-RED 1.2.7 and earlier contains a Prototype Pollution vulnerability in the admin API. A badly formed request can modify the prototype of the default JavaScript Object with the potential to affect the default beh...
CVE-2021-21298
PUBLISHED: 2021-02-26
Node-Red is a low-code programming for event-driven applications built using nodejs. Node-RED 1.2.7 and earlier has a vulnerability which allows arbitrary path traversal via the Projects API. If the Projects feature is enabled, a user with `projects.read` permission is able to access any file via th...