Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Threat Intelligence

12/24/2019
09:00 AM
Connect Directly
Twitter
LinkedIn
Google+
RSS
E-Mail
100%
0%

IoT Security: How Far We've Come, How Far We Have to Go

As organizations fear the proliferations of connected devices on enterprise networks, the private and public sector come together to address IoT vulnerabilities.

"The focus from the EU is a good one, it is important, and we have to take that into consideration, especially as it comes to end nodes," says Dr. Joerg Borchert, president and chairman of Trusted Computing Group (TCG). Privacy protection is a higher priority in Europe, he adds, and it will be a critical part of the conversation around IoT security. As TCG focuses on IoT security, the organization has been working closely with several governments and standards organizations.

"We try to understand what kind of best practices can be utilized and also, it is important for an industry standard to harmonize as much as possible across different geographies and different countries," says Borchert.

UL's IoT Security Rating is another industry measure geared toward manufacturers. Its evaluation process considers critical security aspects of connected products against common attack strategies and known IoT vulnerabilities to create a "security baseline" for consumers.

The driver for UL's rating was to "incentivize manufacturers to build security into their products," says director of security and technology Andrew Jamieson, who anticipates a consumer demand for a minimal security baseline. Adding security will increase cost, he adds, but advertising secure devices beside unsecured ones may encourage people to pay more.

"One of the issues we have with security is it's a commercial problem as much as it is a technical problem," Jamieson explains. He compares the IoT security rating to energy ratings on tools and appliances: because consumers understand why the cost is higher, they're likely to choose a more energy-efficient product. Security ratings will vary between low-risk products, like a connected lightbulb, and high-risk products such as wireless and IP-connected cameras.

IoT Security Startups Bring New Ideas, Capabilities

In addition to providing a gateway into target networks, insecure IoT devices can grant access to a wealth of personal data. Potential exposure of this information is another factor driving private and public sector organizations to pay closer attention to how devices are secured.

"When you think about the amount of data and everything being connected, whether it's at home, on your body, how you drive to work, the threat vector is just growing in magnitudes that you can barely comprehend today," says Gregg Smith, CEO of startup Attila Security. The company launched in 2018 to protect endpoints using a software-defined perimeter.

Attila's tech comes from the NSA, Smith explains. Its initial use case was to provide traveling executives secure connectivity back into government networks. Over time, the company has expanded its use cases to organizations across governments and industries. Now it enables secure IoT deployments, sensitive communications, and secure remote network access. Channels connect devices to one another, enabling IoT device security at a larger scale.

Securing communications across devices is "solving a problem that IoT is creating, but it's not attacking the underlying problem," says Janke. Going down to a deeper level is ReFirm Labs, another IoT security startup specifically focused on the analysis and vetting of IoT firmware.

Firmware, an appealing target given its higher level of access and privilege on a device, is a growing concern in the IoT security industry because it's commonly unprotected. ReFirm's Centrifuge Platform validates and monitors the security of firmware running billions of IoT devices and connected enterprise machines.

"It takes just one firmware weakness for bad actors to gain access to an IoT device and then use that attack surface to compromise the integrity of an entire network," says cofounder Terry Dunlap. These attacks often aren't advanced or complicated to perform; intruders can simply take advantage of default usernames and passwords, which come with so many IoT products.

Where We're Headed

In the future, we'll start to see greater monetization of IoT devices and criminals targeting medical devices, robot assemblies, and industrial control systems, Clay predicts. As new devices come online and organizations automate, we'll continue to see new IoT-focused attacks.

Carson calls on industry organizations to share data across verticals, which he believes can help everyone better prepare for IoT attacks. "Sometimes a lot of lessons can be learned by having cross-industry experience," he notes. "We need to talk more about the successes and share more about the lessons learned."

It's "highly likely" we'll continue to see more actions from state and federal agencies to address IoT security, Geiger anticipates, though he believes states' progress will move faster. While major tech organizations like Amazon and Microsoft are taking regulation seriously, more will need to be done to bring manufacturers of all levels on board.

Related Content:

Check out The Edge, Dark Reading's new section for features, threat data, and in-depth perspectives. Today's top story: "How to Manage API Security."

Kelly Sheridan is the Staff Editor at Dark Reading, where she focuses on cybersecurity news and analysis. She is a business technology journalist who previously reported for InformationWeek, where she covered Microsoft, and Insurance & Technology, where she covered financial ... View Full Bio
 

Recommended Reading:

Previous
3 of 3
Next
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
tlanowitz
50%
50%
tlanowitz,
User Rank: Author
1/24/2020 | 11:58:04 AM
Need for a Shared Security Model
This insightful article exemplifies the need for a shared security model. In a shared security model, the enterprise assumes responsibility for devices (IoT in this example) on the network. And, with a 5G network, which will allow IoT initiatives to gain momentum in the market, the network operator is responsible for the elements of security listed out in 3GPP frameworks and standards (i.e. data encryption and radio access network) as well as the handling the security of the network infrastructure.
COVID-19: Latest Security News & Commentary
Dark Reading Staff 9/25/2020
Hacking Yourself: Marie Moe and Pacemaker Security
Gary McGraw Ph.D., Co-founder Berryville Institute of Machine Learning,  9/21/2020
Startup Aims to Map and Track All the IT and Security Things
Kelly Jackson Higgins, Executive Editor at Dark Reading,  9/22/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-15208
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can ...
CVE-2020-15209
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one....
CVE-2020-15210
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and ...
CVE-2020-15211
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices f...
CVE-2020-15212
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `outpu...