Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Risk

End of Bibblio RCM includes -->
9/21/2020
09:30 AM
Gary McGraw Ph.D.
Gary McGraw Ph.D.
Expert Insights
Connect Directly
Twitter
RSS
E-Mail

Hacking Yourself: Marie Moe and Pacemaker Security

Future consumer devices, including pacemakers, should be built with security from the start.

There is a very long tradition of hacking your own stuff in the security community, but when it comes to hacking yourself, Marie Moe is in a different league. Dr. Moe, who is now a senior security consultant at Oslo-based cybersecurity firm mnemonic, has also served as a scientific researcher at SINTEF and a professor at the Norwegian University of Science and Technology (NTNU). But an even more interesting thing about Dr. Moe - who has a pacemaker installed in her body - is that she became very curious about its security profile.

Five years ago in 2015, about four years after getting a BIOTRONIK CardioMessenger II pacemaker put in her body, Marie initiated the Pacemaker Hacking Project. The main focus at the time was to understand how the very device her life depends on would withstand outside security scrutiny. In short, Marie wanted to know whether someone could hack her heart.

Related Content:

Ripple20 Threatens Increasingly Connected Medical Devices

The Threat from the Internet—and What Your Organization Can Do About It

New on The Edge: Don't Fall for It! Defending Against Deepfakes

In July 2020, Marie released a set of security findings that had been embargoed for over a year in a coordinated vulnerability disclosure process. Ultimately, though the five vulnerabilities she and her research group found are serious enough to warrant their own CERT Advisory and involvement of the Federal Drug Administration, the vendor does not plan to issue any product updates. Note for the record that so far, "no known public exploits specifically target these vulnerabilities," the Advisory says. Also note that these vulnerabilities can't be used to directly reprogram a pacemaker or hack someone's heart.

The five vulnerabilities are:

  • Improper authentication
  • Cleartext credential transmission before encryption
  • Credential reuse
  • In-the-clear storage of medical data
  • Incorrect password storage on device

A technical description of the testing and analysis project carried out by Guillaume Bour to uncover these vulnerabilities can be found here.

Who's at Risk

Pacemaker devices are a big industry, with an estimated one million of them installed in patients every year. Remote data-gathering and transmission over the Internet is now standard issue. This usually involves a home monitoring unit that is issued to the patient when they are sent home with a new pacemaker. So all of these patients are at risk of having their medical data extracted.

As even security beginners know, when you connect a device (or devices) through a public communications network, care must be taken not to expose the system to attacker-in-the-middle attacks. This is particularly concerning when it comes to medical data that directly impact a patient's life. Apparently, the pacemaker in question sets up its communications particularly poorly.

How Do We Fix This?

Medical devices like pacemakers are not the only Internet-enabled devices entering mainstream consumer and enterprise situations. In the not-too-distant future, coming across a non Internet-enabled device will be the rare event­ — that is, everything will at the very least communicate across the Net. The obvious solution to eradicating vulnerabilities like the ones Marie and her group found is building security in. The days of fly-by-night security communications protocol design and super-weak applied cryptography are numbered. Right?

 

 

Gary McGraw is co-founder of the Berryville Institute of Machine Learning. He is a globally recognized authority on software security and the author of eight best selling books on this topic. His titles include Software Security, Exploiting Software, Building Secure Software, ... View Full Bio

Comment  | 
Print  | 
More Insights
//Comments
Newest First  |  Oldest First  |  Threaded View
Naijalitz
Naijalitz,
User Rank: Apprentice
9/22/2020 | 12:10:51 AM
Good one
I have read your article, it is very informative and helpful to me. Thank you for sharing great information to us
Edge-DRsplash-10-edge-articles
I Smell a RAT! New Cybersecurity Threats for the Crypto Industry
David Trepp, Partner, IT Assurance with accounting and advisory firm BPM LLP,  7/9/2021
News
Attacks on Kaseya Servers Led to Ransomware in Less Than 2 Hours
Robert Lemos, Contributing Writer,  7/7/2021
Commentary
It's in the Game (but It Shouldn't Be)
Tal Memran, Cybersecurity Expert, CYE,  7/9/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
The Promise and Reality of Cloud Security
Cloud security has been part of the cybersecurity conversation for years but has been on the sidelines for most enterprises. The shift to remote work during the COVID-19 pandemic and digital transformation projects have moved cloud infrastructure front-and-center as enterprises address the associated security risks. This report - a compilation of cutting-edge Black Hat research, in-depth Omdia analysis, and comprehensive Dark Reading reporting - explores how cloud security is rapidly evolving.
Flash Poll
How Enterprises are Developing Secure Applications
How Enterprises are Developing Secure Applications
Recent breaches of third-party apps are driving many organizations to think harder about the security of their off-the-shelf software as they continue to move left in secure software development practices.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2022-25916
PUBLISHED: 2023-02-01
Versions of the package mt7688-wiscan before 0.8.3 are vulnerable to Command Injection due to improper input sanitization in the 'wiscan.scan' function.
CVE-2022-34400
PUBLISHED: 2023-02-01
Dell BIOS contains a heap buffer overflow vulnerability. A local attacker with admin privileges could potentially exploit this vulnerability to perform an arbitrary write to SMRAM during SMM.
CVE-2022-34443
PUBLISHED: 2023-02-01
Dell Rugged Control Center, versions prior to 4.5, contain an Improper Input Validation in the Service EndPoint. A Local Low Privilege attacker could potentially exploit this vulnerability, leading to an Escalation of privileges.
CVE-2022-34458
PUBLISHED: 2023-02-01
Dell Command | Update, Dell Update, and Alienware Update versions prior to 4.7 contain a Exposure of Sensitive System Information to an Unauthorized Control Sphere vulnerability in download operation component. A local malicious user could potentially exploit this vulnerability leading to the disclo...
CVE-2022-34459
PUBLISHED: 2023-02-01
Dell Command | Update, Dell Update, and Alienware Update versions prior to 4.7 contain a improper verification of cryptographic signature in get applicable driver component. A local malicious user could potentially exploit this vulnerability leading to malicious payload execution.