Partner Perspectives  Connecting marketers to our tech communities.
SPONSORED BY
1/31/2018
09:00 AM
Joe Cosmano
Joe Cosmano
Partner Perspectives
Connect Directly
LinkedIn
RSS
50%
50%

Data Encryption: 4 Common Pitfalls

To maximize encryption effectiveness you must minimize adverse effects in network performance and complexity. Here's how.

Employing data encryption is a no-brainer, as it supports the defense-in-depth strategy that organizations must embrace to stop bad actors from accessing sensitive network files. However, outside of the extra layers of protection data encryption can provide, there are also tradeoffs in network performance and complexity that might arise when organizations aren’t approaching encryption thoughtfully. Here are four pitfalls to avoid as you begin encrypting content.

Pitfall One: Proprietary Algorithms
It may seem counterintuitive to the way many effective security strategies are designed and implemented, but relying on standardized algorithms to encrypt sensitive data is actually safer for organizations than tasking their own IT staff or developers with crafting a unique encryption algorithm or even authentication system. The reason for this is that cryptography is its own specialization that requires an advanced degree of scientific and mathematical precision. While specific individuals from in-house security teams may have this highly specialized set of skills, dedicated cryptographers have devoted their sole attention to crafting industry-standard algorithms like IDEA 128-bit and ARC4 128-bit – more attention than an IT generalist or cross-functional developer could devote given the wealth of other projects in their purview.

Pitfall Two: Full Disk Encryption
While it is essential to ensure that data is encrypted while at rest and in motion, considerations must be made for the systems that manage that encryption.

Full Disk encryption, for instance, is designed to prevent access to sensitive data if a device or its hard drive(s) are removed. When the device is on, and a user is logged in, the sensitive data is available for anyone who is logged in – including bad actors who may have a backdoor into the system. In a roundabout way, this highlights challenges with key management. No matter how strong the crypto, if the key that provides the ability to return the content to plain text is available to adversaries, its game over.

Pitfall Three: Regulatory Compliance
Across most industries, rules regarding data collection, sovereignty and storage are extensive and usually mandated by legislation at the local and federal level. While regulations like HIPAA, PCI, CJIS and CIPA go far in detailing the costs of noncompliance, they are less instructive in telling businesses how to avoid it. In fact, many of these regulations don’t mention data encryption at all, even though encryption can prevent many of the most egregious regulations from taking place. These laws may represent a good starting point for mapping out a security strategy, but teams need to be diligent about going beyond just the standard “checklist” of protocols and standards many of these mandates provide.

Pitfall Four: Decryption Key Storage
Even after teams have gone about extensively encrypting their data, many developers make the mistake of storing the decryption key within the very database they are hoping to protect. After all, encryption is a means for protecting data even after bad actors have infiltrated the data base. If the key to decrypt all that data is basically hiding “under the doormat” right on the other side of the network gateway, all those efforts to encrypt are basically worthless.

As a result, many teams are exploring "Key Encryption Key," "Master Encryption Key" and "Master Signing Key" encryptions that they store elsewhere to protect enterprise data – a step that may seem excessive to some, but provides an all-important level of assurance that minor missteps don’t curtail major security operations.

Joe Cosmano has over 15 years of leadership and hands-on technical experience in roles including Senior Systems and Network Engineer and cybersecurity expert. Prior to iboss, he held positions with Atlantic Net, as engineering director overseeing a large team of engineers and ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
The Year in Security 2018
This Dark Reading Tech Digest explores the biggest news stories of 2018 that shaped the cybersecurity landscape.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-3906
PUBLISHED: 2019-01-18
Premisys Identicard version 3.1.190 contains hardcoded credentials in the WCF service on port 9003. An authenticated remote attacker can use these credentials to access the badge system database and modify its contents.
CVE-2019-3907
PUBLISHED: 2019-01-18
Premisys Identicard version 3.1.190 stores user credentials and other sensitive information with a known weak encryption method (MD5 hash of a salt and password).
CVE-2019-3908
PUBLISHED: 2019-01-18
Premisys Identicard version 3.1.190 stores backup files as encrypted zip files. The password to the zip is hard-coded and unchangeable. An attacker with access to these backups can decrypt them and obtain sensitive data.
CVE-2019-3909
PUBLISHED: 2019-01-18
Premisys Identicard version 3.1.190 database uses default credentials. Users are unable to change the credentials without vendor intervention.
CVE-2019-3910
PUBLISHED: 2019-01-18
Crestron AM-100 before firmware version 1.6.0.2 contains an authentication bypass in the web interface's return.cgi script. Unauthenticated remote users can use the bypass to access some administrator functionality such as configuring update sources and rebooting the device.