Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Partner Perspectives  Connecting marketers to our tech communities.
SPONSORED BY
1/31/2018
09:00 AM
Joe Cosmano
Joe Cosmano
Partner Perspectives
Connect Directly
LinkedIn
RSS
50%
50%

Data Encryption: 4 Common Pitfalls

To maximize encryption effectiveness you must minimize adverse effects in network performance and complexity. Here's how.

Employing data encryption is a no-brainer, as it supports the defense-in-depth strategy that organizations must embrace to stop bad actors from accessing sensitive network files. However, outside of the extra layers of protection data encryption can provide, there are also tradeoffs in network performance and complexity that might arise when organizations aren’t approaching encryption thoughtfully. Here are four pitfalls to avoid as you begin encrypting content.

Pitfall One: Proprietary Algorithms
It may seem counterintuitive to the way many effective security strategies are designed and implemented, but relying on standardized algorithms to encrypt sensitive data is actually safer for organizations than tasking their own IT staff or developers with crafting a unique encryption algorithm or even authentication system. The reason for this is that cryptography is its own specialization that requires an advanced degree of scientific and mathematical precision. While specific individuals from in-house security teams may have this highly specialized set of skills, dedicated cryptographers have devoted their sole attention to crafting industry-standard algorithms like IDEA 128-bit and ARC4 128-bit – more attention than an IT generalist or cross-functional developer could devote given the wealth of other projects in their purview.

Pitfall Two: Full Disk Encryption
While it is essential to ensure that data is encrypted while at rest and in motion, considerations must be made for the systems that manage that encryption.

Full Disk encryption, for instance, is designed to prevent access to sensitive data if a device or its hard drive(s) are removed. When the device is on, and a user is logged in, the sensitive data is available for anyone who is logged in – including bad actors who may have a backdoor into the system. In a roundabout way, this highlights challenges with key management. No matter how strong the crypto, if the key that provides the ability to return the content to plain text is available to adversaries, its game over.

Pitfall Three: Regulatory Compliance
Across most industries, rules regarding data collection, sovereignty and storage are extensive and usually mandated by legislation at the local and federal level. While regulations like HIPAA, PCI, CJIS and CIPA go far in detailing the costs of noncompliance, they are less instructive in telling businesses how to avoid it. In fact, many of these regulations don’t mention data encryption at all, even though encryption can prevent many of the most egregious regulations from taking place. These laws may represent a good starting point for mapping out a security strategy, but teams need to be diligent about going beyond just the standard “checklist” of protocols and standards many of these mandates provide.

Pitfall Four: Decryption Key Storage
Even after teams have gone about extensively encrypting their data, many developers make the mistake of storing the decryption key within the very database they are hoping to protect. After all, encryption is a means for protecting data even after bad actors have infiltrated the data base. If the key to decrypt all that data is basically hiding “under the doormat” right on the other side of the network gateway, all those efforts to encrypt are basically worthless.

As a result, many teams are exploring "Key Encryption Key," "Master Encryption Key" and "Master Signing Key" encryptions that they store elsewhere to protect enterprise data – a step that may seem excessive to some, but provides an all-important level of assurance that minor missteps don’t curtail major security operations.

Joe Cosmano has over 15 years of leadership and hands-on technical experience in roles including Senior Systems and Network Engineer and cybersecurity expert. Prior to iboss, he held positions with Atlantic Net, as engineering director overseeing a large team of engineers and ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
News
FluBot Malware's Rapid Spread May Soon Hit US Phones
Kelly Sheridan, Staff Editor, Dark Reading,  4/28/2021
Slideshows
7 Modern-Day Cybersecurity Realities
Steve Zurier, Contributing Writer,  4/30/2021
Commentary
How to Secure Employees' Home Wi-Fi Networks
Bert Kashyap, CEO and Co-Founder at SecureW2,  4/28/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
2021 Top Enterprise IT Trends
We've identified the key trends that are poised to impact the IT landscape in 2021. Find out why they're important and how they will affect you today!
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-36124
PUBLISHED: 2021-05-07
Pax Technology PAXSTORE v7.0.8_20200511171508 and lower is affected by XML External Entity (XXE) injection. An authenticated attacker can compromise the private keys of a JWT token and reuse them to manipulate the access tokens to access the platform as any desired user (clients and administrators).
CVE-2020-36125
PUBLISHED: 2021-05-07
Pax Technology PAXSTORE v7.0.8_20200511171508 and lower is affected by incorrect access control where password revalidation in sensitive operations can be bypassed remotely by an authenticated attacker through requesting the endpoint directly.
CVE-2020-36126
PUBLISHED: 2021-05-07
Pax Technology PAXSTORE v7.0.8_20200511171508 and lower is affected by incorrect access control that can lead to remote privilege escalation. PAXSTORE marketplace endpoints allow an authenticated user to read and write data not owned by them, including third-party users, application and payment term...
CVE-2020-36127
PUBLISHED: 2021-05-07
Pax Technology PAXSTORE v7.0.8_20200511171508 and lower is affected by an information disclosure vulnerability. Through the PUK signature functionality, an administrator will not have access to the current p12 certificate and password. When accessing this functionality, the administrator has the opt...
CVE-2020-36128
PUBLISHED: 2021-05-07
Pax Technology PAXSTORE v7.0.8_20200511171508 and lower is affected by a token spoofing vulnerability. Each payment terminal has a session token (called X-Terminal-Token) to access the marketplace. This allows the store to identify the terminal and make available the applications distributed by its ...