Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Risk

1/22/2014
08:32 AM
50%
50%

No Easy Solution To Stop Amplification Attacks

Denial-of-service attacks powered by NTP amplification interrupted online-gaming services over the past month, renewing efforts to find solutions to the vulnerabilities

A series of attacks against online-gaming services has raised awareness of the ability of certain Internet protocols to be used as a vector for denial-of-service attacks.

In late December and continuing into January, a group of Internet vandals with an apparent vendetta against a single gamer took down online gaming services using an simple amplification attack. By requesting a large list of previous requesters from a vulnerable network time protocol (NTP) server and substituting the target's IP address as the source of the request, the attackers amplified the volume of the attack by a factor of more than 5,500, says Liam O Murchu, manager of security response for Symantec's North American operations.

"So you can send just one short command to the NTP service, and the service will send a list of all computers that have attached to that server to the victim, and that is where you get the amplification," he says. "But the problem with these sorts of attacks is that it is not the victim that has to patch their service -- it is the middleman who is running the outdated service that needs to upgrade."

Security experts have kicked off an initiative to raise awareness of the owners of misconfigured servers running the network time protocol (NTP) to update their systems following a series of attacks by a group of Internet vandals against online-gaming services. The Open NTP project, for example, allows the general public to scan their NTP servers to see whether they allow the monlist command, which the attackers abused to amplify their attacks.

Yet the problem is not restricted to just NTP. Domain name service (DNS) servers that allow anyone to use them, known as open resolvers, are more commonly abused in amplification attacks. In March 2013, such an attack created a record-breaking amount of traffic to inundate anti-spam service Spamhaus.

[What attacks are most likely against cloud computing environments? Here's a look -- and some advice. See How Cybercriminals Attack The Cloud.]

In fact, any protocol that asymmetrically responds to a small request with a larger response could be used to create a distributed denial-of-service attack. While the capabilities that are abused to produce amplification can be sought out, most exist for a good reason, and so it is difficult to triage abusable services until they are actually targeted, says Shawn Marck, CEO of Black Lotus, a denial-of-service mitigation provider.

"It wasn't a vulnerability until someone exploited it -- it was a feature," he says. "But it boils down to any protocol that allows you to make a small request and elicit a large response allows amplification -- unless it is TCP."

Internet communications based on the transmission control protocol (TCP) have a built-in security check: The communication has to be acknowledged by the original sender, essentially making source-address spoofing impossible. Some services that rely on the fire-and-forget communications protocol, known as the user datagram protocol (UDP), first establish a session using TCP and then revert to a stream of communications using UDP. Online gaming and Internet telephony commonly use this technique, Marck says.

Defending against amplification attacks is fairly straightforward, says John Graham-Cumming, a programmer with CloudFlare, a provider of Web security and DDoS mitigation services. NTP attacks can be simply filtered out at the edge of the network before they get to the target. Amplification attacks based on DNS are more difficult, however, since companies want valid DNS queries to arrive at their destination.

"The larger problem with DNS amplification for someone like CloudFlare is that we have to be able to receive DNS packets," he says. "For DNS, it is the nature of our business -- we have to be able to receive unsolicited DNS requests."

By focusing efforts on filtering out DNS responses, the problem become quite tractable, Graham-Cumming says.

For the Internet at large, however, the problem of amplification is not one that is easily solved. Two approaches have emerged: patching each service vulnerable to amplification and requiring service providers to filter out requests from their networks that contain a spoofed source address. While the more general solution would be for Internet service providers to block outgoing packets that contain source addresses outside of their networks, the capability would add costs to their operations, and most ISPs are already running lean, Graham-Cumming says.

It's a matter of incentives, he adds. While spoofing and DNS amplification do not typically impact the Internet service provider, the cost of the solution does. Such external costs to the company, like a company polluting a river, often need government intervention to provide the incentive to do right, Graham-Cumming says.

"It is not a problem for you -- it is a problem for the Internet as a whole, just like polluting a river is not a problem for the polluter but for everyone downstream," he says. "But I think for the network providers, it is probably better for them to do this on their own, rather than having the government come in."

Have a comment on this story? Please click "Add Your Comment" below. If you'd like to contact Dark Reading's editors directly, send us a message. Veteran technology journalist of more than 20 years. Former research engineer. Written for more than two dozen publications, including CNET News.com, Dark Reading, MIT's Technology Review, Popular Science, and Wired News. Five awards for journalism, including Best Deadline ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
I 'Hacked' My Accounts Using My Mobile Number: Here's What I Learned
Nicole Sette, Director in the Cyber Risk practice of Kroll, a division of Duff & Phelps,  11/19/2019
DevSecOps: The Answer to the Cloud Security Skills Gap
Lamont Orange, Chief Information Security Officer at Netskope,  11/15/2019
Attackers' Costs Increasing as Businesses Focus on Security
Robert Lemos, Contributing Writer,  11/15/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Navigating the Deluge of Security Data
In this Tech Digest, Dark Reading shares the experiences of some top security practitioners as they navigate volumes of security data. We examine some examples of how enterprises can cull this data to find the clues they need.
Flash Poll
Rethinking Enterprise Data Defense
Rethinking Enterprise Data Defense
Frustrated with recurring intrusions and breaches, cybersecurity professionals are questioning some of the industrys conventional wisdom. Heres a look at what theyre thinking about.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-5087
PUBLISHED: 2019-11-21
An exploitable integer overflow vulnerability exists in the flattenIncrementally function in the xcf2png and xcf2pnm binaries of xcftools 1.0.7. An integer overflow can occur while calculating the row's allocation size, that could be exploited to corrupt memory and eventually execute arbitrary code....
CVE-2019-5509
PUBLISHED: 2019-11-21
ONTAP Select Deploy administration utility versions 2.11.2 through 2.12.2 are susceptible to a code injection vulnerability which when successfully exploited could allow an unauthenticated remote attacker to enable and use a privileged user account.
CVE-2019-6693
PUBLISHED: 2019-11-21
Use of a hard-coded cryptographic key to cipher sensitive data in FortiOS configuration backup file may allow an attacker with access to the backup file to decipher the sensitive data, via knowledge of the hard-coded key. The aforementioned sensitive data includes users' passwords (except the admini...
CVE-2019-17272
PUBLISHED: 2019-11-21
All versions of ONTAP Select Deploy administration utility are susceptible to a vulnerability which when successfully exploited could allow an administrative user to escalate their privileges.
CVE-2019-17650
PUBLISHED: 2019-11-21
An Improper Neutralization of Special Elements used in a Command vulnerability in one of FortiClient for Mac OS root processes, may allow a local user of the system on which FortiClient is running to execute unauthorized code as root by bypassing a security check.