Weaponizing GPS Tracking Devices
Researcher demonstrates how he was able to easily turn Zoombak personal GPS devices against their owners
April 22, 2011
Those low-cost embedded tracking devices in your smartphone or those personal GPS devices that track the whereabouts of your children, car, pet, or shipment can easily be intercepted by hackers, who can then pinpoint their whereabouts, impersonate them, and spoof their physical location, a researcher has discovered.
Security researcher Don Bailey at SOURCE Boston today disclosed the newest phase of his research on the lack of security in embedded devices, demonstrating how he is able to hack vendor Zoombak's personal GPS locator devices in order to find, target, and impersonate the user or equipment rigged with these consumer-focused devices. Bailey, a security consultant with iSEC Partners, decided to call out the widely available products from Zoombak after the vendor and its parent company Securus Inc. didn't respond when he alerted them about the security weaknesses. Mitigating these attacks would only require a few simple changes to the product, he says. Meanwhile, the threat is real, he says. "Anyone with a little hardware knowledge could reverse-engineer this," he says. "Children are physically at [risk] because these devices can be turned into weapons."
Bailey also released tools today for each of the three attacks he demonstrated at SOURCE Boston.
"Embedded devices are low-cost, easy to use, and easy to debug. And the security landscape is very small," Bailey says. "There is very little capability for integrating secure communications on the devices and ensuring that it's your code executing on there."
The underlying issue is that the low-cost and rapid commoditization of these embedded systems precludes their being properly secured. "There's a low entry point for people to develop them, so you have a serious problem because new developers and new startups don't have an understanding of security. It's an insecure product by default," he says.
Embedded system security is tricky in that there are so many moving parts in the final products, including baseband, GPS firmware, application firmware, and SIM software, according to Bailey.
It's not just consumer GPS tracking devices that are vulnerable, either. Bailey says he was also able to hack server SCADA embedded systems. "I was able to remotely compromise the box in its entirety" via the microcontroller on it, he says.
With the Zoombak device, Bailey was able to discover the tracking devices, profile them, using what he calls "war texting," to intercept their location. Zoombak uses a Web 2.0 interface that provides a map showing the GPS-equipped person or payload's physical location. The devices receive commands via SMS text messages.
In the first attack, Bailey forced the device to send him its physical location using techniques to grab the GPS coordinates and local cell tower information. "I can force those devices to bypass the manufacturer's controls and give me their information and they have no idea that I've intercepted their location," he says.
Once he fingerprinted the device, he can determine just what it is. "I know if it's a semi, a mail van, or a teenager driving the family car just by watching the vehicle for a certain period of time. I can use traffic cameras on Google satellite," he says. That would leave the GPS-outfitted person or payload prone to physical attack, he says.
Bailey was also able to impersonate the Zoombak personal GPS tracking device. "I use it as a weapon to fake the location data. If it's a truck on I-70, I can take the device and force it to send false location to the server and meantime, could hijack the truck," he explains. Zoombak's command and control channel is in the clear, unencrypted.
These devices could be locked down with some type of PKI on the microcomputer to encrypt the communications between the device and its server, Bailey says. "I can just sniff the line and see all of the data in plain text. I shouldn't be able to do that so easily; it's pretty ridiculous," he says.
Another protection would be to ensure that when a device on a 3G network that it cannot interact with other 3g devices: it should only be able to speak with the manufacturer's server, he says. And he suggests network partititioning, which also would help secure these devices.
Zoombak had not responded to press inquiries as of this posting.
Have a comment on this story? Please click "Add Your Comment" below. If you'd like to contact Dark Reading's editors directly, send us a message.
About the Author
You May Also Like
Cybersecurity Day: How to Automate Security Analytics with AI and ML
Dec 17, 2024The Dirt on ROT Data
Dec 18, 2024