Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Endpoint

7/30/2018
10:30 AM
Louis Creager
Louis Creager
Commentary
Connect Directly
LinkedIn
RSS
E-Mail vvv
100%
0%

MUD: The Solution to Our Messy Enterprise IoT Security Problems?

The 'Manufacturer Usage Description' proposal from IETF offers a promising route for bolstering security across the industry.

While Internet of Things (IoT) devices offer plenty of impressive capabilities that improve efficiency through industrial and workplace applications, they unequivocally continue to pose major security liabilities. Many IoT devices feature little or zero built-in security measures, making them enticing targets for hackers. At the same time, many companies plan to add a large number of IoT devices to their networks, increasing the challenge of identifying which devices are actually legitimate and limiting each device to only the access it requires.

While experienced network administrators might mitigate these shortcomings with access rules tailored to each IoT device or device category, this work is painstakingly cumbersome, offers no guarantees of security, and creates more work in an area where greater efficiency is the goal. In short, enterprises could certainly benefit from fundamental IoT security improvements at the device level.

The Proposed MUD Industry Standard
The Manufacturer Usage Description (MUD) specification, proposed and described in an Internet Engineering Task Force (IETF) draft document, offers a promising route for bolstering security across the IoT industry. MUD functions by enabling IoT devices to communicate with the networks they connect with and detailing the specific access and network functionality they require.

The MUD workflow is as follows. First, when the IoT device joins a network, it sends a MUD URL to the router. The router then functions as a MUD manager and visits the specified URL to retrieve a MUD file. The MUD manager then uses the information within the MUD file to put access rules in place that are recommended by the device's manufacturer.

In this way, enterprises can simply connect their IoT devices and the access and capabilities of those devices will be automatically limited to what is appropriate. Hackers may succeed in hijacking those devices but will be unable to corrupt the MUD file accessed online from the manufacturer. If an attacker attempts to direct a device to participate in a distributed denial-of-service attack, wreak havoc in an industrial environment, or collect and transfer sensitive information to an unfamiliar destination, MUD will not allow that activity to happen. Manufacturers still will need to address vulnerabilities and update firmware going forward, but MUD drastically reduces the harm that a compromised IoT device can actually inflict.

Can the MUD URL to which the Device Points Be Corrupted?
Hackers who understand this workflow could attempt to change the MUD URL to target their own false MUD file, one that allows the access needed to perform malicious activities. As drafted, MUD offers three choices for sending the MUD URL (and allows for others to be added in the future): the DHCP option, the X.509 extension, and the LLDP extension. Of these, the DHCP option and LLDP extension potentially could allow the MUD URL to be corrupted in scenarios where the IoT device becomes compromised. The X.509 extension distinguishes itself as more secure because the MUD URL is added to an identity certificate, either by the manufacturers when the device's IDevID is created or by another party in the supply chain with the creation of the LDevID.

How the 802.1AR Standard and DICE Support MUD Security
The IEEE 802.1AR standard specifies secure device identifiers, IDevIDs or LDevIDs, that are unique and cryptographically bound to individual devices. It also provides the capability to authenticate the identity of these devices. Devices utilizing this standard most often include a Trusted Platform Module (TPM) that stores cryptographic keys. Because the X.509 extension is added to the certificate for the IDevID or LDevID and stored on the TPM, the correct MUD URL is safeguarded through this verification. The IDevID can't be changed, and so neither can the MUD URL.

However, the size, cost, and power requirements of TPMs create severe limitations, making it impossible to rely on this method for securing all IoT devices. Thankfully, the Device Identifier Composition Engine (DICE) Architecture, offered by Trusted Computing Group, is up to the task of providing security to devices with these resource limits. Using DICE, even smaller IoT devices can store cryptographic keys and use the 802.1AR standard without the need for a TPM. Thus, they can use the X.509 extension and ensure the MUD URL is secure.

Looking forward, the promising MUD standard must be finalized as a draft document, and manufacturers of IoT devices and routers must then embrace the standard. If that happens, though issues will always remain, enterprises will have all the advantages of an IoT that is significantly safer and more secure.

Related Content:

Learn from the industry's most knowledgeable CISOs and IT security experts in a setting that is conducive to interaction and conversation. Register before July 27 and save $700! Click for more info

Louis Creager is an IoT security analyst at  * zvelo* , a provider of cybersecurity solutions for web content, network traffic, and connected/IoT devices. Prior to joining zvelo, Louis held security analyst and engineering roles at Trustwave, an information security ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Navigating Security in the Cloud
Diya Jolly, Chief Product Officer, Okta,  12/4/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Navigating the Deluge of Security Data
In this Tech Digest, Dark Reading shares the experiences of some top security practitioners as they navigate volumes of security data. We examine some examples of how enterprises can cull this data to find the clues they need.
Flash Poll
Rethinking Enterprise Data Defense
Rethinking Enterprise Data Defense
Frustrated with recurring intrusions and breaches, cybersecurity professionals are questioning some of the industrys conventional wisdom. Heres a look at what theyre thinking about.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-19551
PUBLISHED: 2019-12-06
In userman 13.0.76.43 through 15.0.20 in Sangoma FreePBX, XSS exists in the User Management screen of the Administrator web site. An attacker with access to the User Control Panel application can submit malicious values in some of the time/date formatting and time-zone fields. These fields are not b...
CVE-2019-19552
PUBLISHED: 2019-12-06
In userman 13.0.76.43 through 15.0.20 in Sangoma FreePBX, XSS exists in the user management screen of the Administrator web site, i.e., the/admin/config.php?display=userman URI. An attacker with sufficient privileges can edit the Display Name of a user and embed malicious XSS code. When another user...
CVE-2019-19620
PUBLISHED: 2019-12-06
In SecureWorks Red Cloak Windows Agent before 2.0.7.9, a local user can bypass the generation of telemetry alerts by removing NT AUTHORITY\SYSTEM permissions from a malicious file.
CVE-2019-19625
PUBLISHED: 2019-12-06
SROS 2 0.8.1 (which provides the tools that generate and distribute keys for Robot Operating System 2 and uses the underlying security plugins of DDS from ROS 2) leaks node information due to a leaky default configuration as indicated in the policy/defaults/dds/governance.xml document.
CVE-2019-19627
PUBLISHED: 2019-12-06
SROS 2 0.8.1 (after CVE-2019-19625 is mitigated) leaks ROS 2 node-related information regardless of the rtps_protection_kind configuration. (SROS2 provides the tools to generate and distribute keys for Robot Operating System 2 and uses the underlying security plugins of DDS from ROS 2.)