Vulnerabilities / Threats
8/5/2011
12:19 PM
Connect Directly
RSS
E-Mail
50%
50%
Repost This

Getting Root On The Human Body

Black Hat researcher shows it is possible to remotely control a diabetic's insulin pump without person's knowledge

BLACK HAT USA 2011 -- Las Vegas -- A security researcher at Black Hat yesterday demonstrated how a hacker could remotely turn off a diabetic person's insulin pump without his knowledge. The findings came after months of research delving into the security of the portable medical devices that monitor diabetics' blood-sugar levels and those that deliver the body-chemistry-balancing insulin necessary to keep those levels in check throughout the day.

Click here for more of Dark Reading's Black Hat articles.

A SCADA security expert by day, Jerome Radcliffe himself is a diabetic and had been curious about the security of the devices that keep him alive. He looked into both continuous glucose monitors (CGMs) and insulin pumps within his research, with the findings from his pump-tinkering offering the most dramatic hackability.

According to Radcliffe, it is possible for a hacker to not only illicitly turn off the pump remotely, with the device only offering a small chirp as a response, but also to remotely manipulate any setting on the pump without it notifying the user at all.

"It's basically like having root on the device, and that's like having root on the chemistry of the human body," he said.

Diabetics today measure their glucose levels either by using blood-testing kits or a CGM that attaches a wire in the body and wirelessly transmits readings to a small pager-like device. Using those findings, a diabetic would then manually trigger the insulin pump he wears throughout the day to deliver the appropriate amount to keep blood-sugar levels stable. When a diabetic doesn't get enough insulin, he can suffer from a potentially fatal high-blood sugar level. But too much insulin can also cause fatally low-blood sugar, and once it is delivered to the body it can't be taken out.

The ability to fully control insulin delivery to a person is "scary" because of the precarious balance a diabetic must walk with the drug in order to stay alive.

In addition to his hack of the insulin pump, Radcliffe also learned how to listen into the transmissions of a CGM device using an oscilloscope. Though he wasn't able to fully hack the device in order to deliver precise false readings, he says the possibility is technically possible, and he was still able to disrupt and jam the device.

Radcliffe says that medical device manufacturers in this space need to be thinking of these types of vulnerabilities as the industry begins to move to support the Juvenile Diabetes Research Foundation's Artificial Pancreas Project. This project hopes to develop the toolset to the point where it is possible to link CGM data directly to insulin pumps to completely automate the insulin-delivery process. It sounds convenient, but if it is possible for hackers to own either device, the diabetic's life could be in grave danger.

"This makes the secure transmission of the CGM much more important," Radcliffe says. "We've got to think about how these technologies talk to each other."

Have a comment on this story? Please click "Discuss" below. If you'd like to contact Dark Reading's editors directly, send us a message.

Comment  | 
Print  | 
More Insights
Register for Dark Reading Newsletters
White Papers
Cartoon
Current Issue
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2012-0360
Published: 2014-04-23
Memory leak in Cisco IOS before 15.1(1)SY, when IKEv2 debugging is enabled, allows remote attackers to cause a denial of service (memory consumption) via crafted packets, aka Bug ID CSCtn22376.

CVE-2012-1317
Published: 2014-04-23
The multicast implementation in Cisco IOS before 15.1(1)SY allows remote attackers to cause a denial of service (Route Processor crash) by sending packets at a high rate, aka Bug ID CSCts37717.

CVE-2012-1366
Published: 2014-04-23
Cisco IOS before 15.1(1)SY on ASR 1000 devices, when Multicast Listener Discovery (MLD) tracking is enabled for IPv6, allows remote attackers to cause a denial of service (device reload) via crafted MLD packets, aka Bug ID CSCtz28544.

CVE-2012-3062
Published: 2014-04-23
Cisco IOS before 15.1(1)SY, when Multicast Listener Discovery (MLD) snooping is enabled, allows remote attackers to cause a denial of service (CPU consumption or device crash) via MLD packets on a network that contains many IPv6 hosts, aka Bug ID CSCtr88193.

CVE-2012-3918
Published: 2014-04-23
Cisco IOS before 15.3(1)T on Cisco 2900 devices, when a VWIC2-2MFT-T1/E1 card is configured for TDM/HDLC mode, allows remote attackers to cause a denial of service (serial-interface outage) via certain Frame Relay traffic, aka Bug ID CSCub13317.

Best of the Web