Threat Intelligence

11/22/2017
10:00 AM
50%
50%

Samsung Pay Leaks Mobile Device Information

Researcher at Black Hat Europe will show how Samsung Pay's security falls short and ways attackers could potentially bypass it.

Mobile users installing Samsung Pay on their devices could have sensitive information stolen by attackers due to a newly discovered weakness in the app that leaks the digital tokens that secure transactions and other technical information such as network traffic logs.

An attacker could capture this information without having to authenticate to the device, according to a Tencent researcher who goes by the name of HC, who at Black Hat Europe 2017 next month will present his findings on the Samsung Pay security weaknesses.

"This information can let the attacker learn much more about the internal mechanisms of Samsung Pay and allow them to use it to their advantage to go even deeper into Samsung Pay," HC says.

The attacker, for example, could take the information and use it to view communication between users and their banks in plain text. With enough information, HC notes, an attacker could create another token to withdraw money from users' bank accounts.

Samsung Pay's tokens are unique alphanumeric identifiers generated via algorithms and designed to eliminate the need to use a credit card or debit card number.

"This is not a vulnerability in Samsung Pay, but a mistake in Samsung Pay's app. The mistake is you don't need privileges to get access to the phone log system," says HC, who has notified Samsung about the issue.

HC conducted his research using a Samsung Galaxy S6 but says all Samsung Galaxy smartphones that feature Samsung Pay may be at risk.

The purpose of HC's presentation is to discuss Samsung Pay's security and how to generate a token without the device being physically present, which is different than a 2016 Black Hat Samsung Pay demonstration by another security researcher, HC notes.

Although HC in his research had aimed to generate a token without a Samsung Galaxy device, he acknowledged he was not able to achieve that goal because of the strength of the encrypted traffic and difficulty in accessing the secure chip to crack the encrypted key.

"It is possible to compromise Samsung Pay with the right tools and skills," HC says, noting in his particular case the desired tools were not immediately available.

Related Content:

 

Join Dark Reading LIVE for two days of practical cyber defense discussions. Learn from the industry’s most knowledgeable IT security experts. Check out the INsecurity agenda here.

Dawn Kawamoto is an Associate Editor for Dark Reading, where she covers cybersecurity news and trends. She is an award-winning journalist who has written and edited technology, management, leadership, career, finance, and innovation stories for such publications as CNET's ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
WebAuthn, FIDO2 Infuse Browsers, Platforms with Strong Authentication
John Fontana, Standards & Identity Analyst, Yubico,  9/19/2018
NSS Labs Files Antitrust Suit Against Symantec, CrowdStrike, ESET, AMTSO
Kelly Jackson Higgins, Executive Editor at Dark Reading,  9/19/2018
Turn the NIST Cybersecurity Framework into Reality: 5 Steps
Mukul Kumar & Anupam Sahai, CISO & VP of Cyber Practice and VP Product Management, Cavirin Systems,  9/20/2018
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: Are you sure this is how we get our data into the cloud?
Current Issue
Flash Poll
The Risk Management Struggle
The Risk Management Struggle
The majority of organizations are struggling to implement a risk-based approach to security even though risk reduction has become the primary metric for measuring the effectiveness of enterprise security strategies. Read the report and get more details today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-14633
PUBLISHED: 2018-09-25
A security flaw was found in the chap_server_compute_md5() function in the ISCSI target code in the Linux kernel in a way an authentication request from an ISCSI initiator is processed. An unauthenticated remote attacker can cause a stack buffer overflow and smash up to 17 bytes of the stack. The at...
CVE-2018-14647
PUBLISHED: 2018-09-25
Python's elementtree C accelerator failed to initialise Expat's hash salt during initialization. This could make it easy to conduct denial of service attacks against Expat by contructing an XML document that would cause pathological hash collisions in Expat's internal data structures, consuming larg...
CVE-2018-10502
PUBLISHED: 2018-09-24
This vulnerability allows local attackers to escalate privileges on vulnerable installations of Samsung Galaxy Apps Fixed in version 4.2.18.2. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. The specific flaw exist...
CVE-2018-11614
PUBLISHED: 2018-09-24
This vulnerability allows remote attackers to escalate privileges on vulnerable installations of Samsung Members Fixed in version 2.4.25. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. The specific flaw exists wit...
CVE-2018-14318
PUBLISHED: 2018-09-24
This vulnerability allows remote attackers to execute arbitrary code on vulnerable installations of Samsung Galaxy S8 G950FXXU1AQL5. User interaction is required to exploit this vulnerability in that the target must have their cellular radios enabled. The specific flaw exists within the handling of ...