Threat Intelligence
2/15/2017
12:00 PM
Paul Shomo
Paul Shomo
Commentary
Connect Directly
Twitter
LinkedIn
RSS
E-Mail vvv
50%
50%

What To Do When All Malware Is Zero-Day

The industry needs new methods to fingerprint malware in order to determine who's behind breaches, and what can be done to stop them.

Cybersecurity is built, at least in part, on fingerprinting and cataloging malware. Polymorphic malware has always existed, but the recent proliferation of do-it-yourself builders, which allow novice hackers to easily create unique crimeware, is sending ripples through the threat intelligence industry.

The primary method of identifying malware has always been file hashing. A file hash is produced through a mathematic operation that creates a unique fingerprint for files, allowing security vendors to compare a suspicious sample against known files from the past.

The weakness of the file hash is that if even a single byte changes, the hash value changes too. The ease of building "zero-day" hash variations killed the old antivirus industry, which relied too heavily on looking up hashes in signature databases. Today's detection industry has already adjusted to polymorphic malware. Instead of using hashes, modern detection products monitor malware behavior on the endpoint or in sandboxes, or utilize machine learning to look inside files and recognize similarities to known malware.

In today's detection industry, one should think of hashing as more of a shortcut to locate the easy stuff, or rule out known good files (whitelisting). It's also a data transfer shortcut: one can avoid moving an entire file across the network or into the cloud by instead sending a small hash value, and then query it against a hash database.

While detection products have adjusted, file hashes are still used in categorizing malware, sharing intelligence, and working backward to figure out who your adversary is, referred to as attribution. Herein lies a growing problem.

Threat Intel to Know Your Enemy and Predict Behaviors
Humans are habitual creatures who do not get up in the morning each day and learn an entirely new set of tools and a way of operating. They fall into a pattern of "Tools, Tactics, and Procedures," or TTPs. TTPs can also be used to profile and predict hacker behaviors. Because TTPs include the tendency for hackers to reuse malware for multiple targets, there is value in organizations comparing their suspicious samples with others across the industry.

For example, upon locating a file sample in your organization, a researcher might want to tap into threat intel to identify the type and family of malware and learn of its behavior and capabilities. Thus, the workflow of threat intelligence usage is often, "I have malware with this hash; who else has seen it?" But what happens when the proliferation of uniquely hashed malware is so great they are all unique to your organization? This erodes the collaborative value of threat intel.

It would be extreme to say the threat intelligence industry has lost its value. Intelligence also includes correlating malware behavior as well as URLs and IP addresses of command and control servers beaconed to by malware. Additionally all malware will never be unique; there are cases such as advanced persistent threats designed to sit on networks for many months, which — if their files are completely unique — would draw the attention of infosec personnel.

Yet there is a definite trend the industry is seeing toward increasing amounts of malware uniqueness. The 2015 Verizon DBIR Report, when commenting on the hashes of malware, proclaimed in capital letters that "Seventy to ninety percent OF MALWARE SAMPLES ARE UNIQUE." Last year, Verizon doubled down on this stating, "We first wanted to reaffirm what we found last year regarding the uniqueness of hashes." 2017's DBIR Report claims that in data sets that it monitors, 99% of malware files are replaced by uniquely hashed binaries within 58 seconds of appearing.

The industry needs methods to classify malware, to determine who's behind breaches, and what can be done to stop them. File hashing certainly appears to becoming less useful to accomplish these aims. It's time to adjust our thinking.

Editor's Note: This is the first of a two-part series. Next week's installment, Why We Need To Reinvent How We Catalogue Malware, will discuss how hackers have become adept at producing uniquely hashed malware, and what can be done, if anything, to classify this new ocean of unique cyberthreats.

Related Content:

 

A veteran of cybersecurity R&D, Paul Shomo has been quoted by FoxNews, NetworkWorld, SC Magazine and CSO Online. Paul is a contributor at Dark Reading, and has published in eWeek and SecurityWeek's Infosec Island. Currently on Guidance Software's security advisory team, Paul ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
5 Reasons the Cybersecurity Labor Shortfall Won't End Soon
Steve Morgan, Founder & CEO, Cybersecurity Ventures,  12/11/2017
Oracle Product Rollout Underscores Need for Trust in the Cloud
Kelly Sheridan, Associate Editor, Dark Reading,  12/11/2017
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: Gee, these virtual reality goggles work great!!! 
Current Issue
The Year in Security: 2017
A look at the biggest news stories (so far) of 2017 that shaped the cybersecurity landscape -- from Russian hacking, ransomware's coming-out party, and voting machine vulnerabilities to the massive data breach of credit-monitoring firm Equifax.
Flash Poll
[Strategic Security Report] How Enterprises Are Attacking the IT Security Problem
[Strategic Security Report] How Enterprises Are Attacking the IT Security Problem
Enterprises are spending more of their IT budgets on cybersecurity technology. How do your organization's security plans and strategies compare to what others are doing? Here's an in-depth look.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2017-0290
Published: 2017-05-09
NScript in mpengine in Microsoft Malware Protection Engine with Engine Version before 1.1.13704.0, as used in Windows Defender and other products, allows remote attackers to execute arbitrary code or cause a denial of service (type confusion and application crash) via crafted JavaScript code within ...

CVE-2016-10369
Published: 2017-05-08
unixsocket.c in lxterminal through 0.3.0 insecurely uses /tmp for a socket file, allowing a local user to cause a denial of service (preventing terminal launch), or possibly have other impact (bypassing terminal access control).

CVE-2016-8202
Published: 2017-05-08
A privilege escalation vulnerability in Brocade Fibre Channel SAN products running Brocade Fabric OS (FOS) releases earlier than v7.4.1d and v8.0.1b could allow an authenticated attacker to elevate the privileges of user accounts accessing the system via command line interface. With affected version...

CVE-2016-8209
Published: 2017-05-08
Improper checks for unusual or exceptional conditions in Brocade NetIron 05.8.00 and later releases up to and including 06.1.00, when the Management Module is continuously scanned on port 22, may allow attackers to cause a denial of service (crash and reload) of the management module.

CVE-2017-0890
Published: 2017-05-08
Nextcloud Server before 11.0.3 is vulnerable to an inadequate escaping leading to a XSS vulnerability in the search module. To be exploitable a user has to write or paste malicious content into the search dialogue.