Risk
11/14/2011
05:33 PM
50%
50%

Data Mining Snares Health Insurance Fraud

LexisNexis applies predictive modeling, a massive database, and high-performance computing cluster technology to spot health insurance fraud before claims are paid.

17 Leading EHR Vendors
(click image for larger view)
Slideshow: 17 Leading EHR Vendors
As Medicare searches for ways to head off fraud, private payers are starting to embrace predictive modeling in their own quest to stamp out insurance fraud before claims are paid. "I think the big move on the payer side is to pre-pay," according to Bill Fox, senior director of LexisNexis Health Care, a year-and-a-half-old division of online information giant LexisNexis, a subsidiary of Reed Elsevier. That means payers are trying to examine claims before the money goes out the door. "Virtually every big payer we talk to is thinking about it," Fox told InformationWeek Healthcare.

LexisNexis is among those joining the movement to detect fraud with advanced data mining by building analytics and risk-management capabilities into its vast data platforms. The company has built databases on 250 million people in the U.S., culled from 35 billion public records, and now is applying its analytics capabilities to health insurance. The company analyzes its data using its supercomputer platform, which is built on top of high-performance computing cluster technology, and was made available earlier this year as an open-source platform through a new LexisNexis subsidiary called HPCC Systems. Fox says this allows for fast queries of "massive amounts of big data." The technology helps disambiguate and link data, piecing together nuggets of information to reveal collusion, both proactively and after some evidence of wrongdoing has been found.

[Legally, EHRs are double-edged swords: They protect clinicians from malpractice litigation but also put them at greater risk. See Will Your EHR Land You In Court?]

Such analysis looks for complex patterns in the diagnosis, treatment, and billing of patient encounters that aren't easily spotted in traditional claims review.

In targeting health insurance fraud, LexisNexis looks at 15 to 18 metrics on claims and individual providers, then assigns a risk score to each healthcare provider. The system scouts for risks inherent in claims and risks inherent in each person, according to Fox, an attorney by trade who previously handled insurance fraud cases at a major law firm and has worked with the U.S. attorney's office in Philadelphia to investigate white-collar crime, including cybercrime.

For years, payers have relied on claims edits to spot errors, but they haven't been able to edit for patterns suggesting fraud because an edit focuses on a single claim and it's impossible to identify a pattern with one claim. But predictive modeling and other analytics tools can scan a series of claims to flag individual physicians and coders for extra review, Fox said, allowing payers to incorporate extra edits into future claims.

"Predictive modeling looks at outliers," Fox noted. Unusual values could indicate fraud or just simply improper coding or a physician who practices in a certain way, he said. In the past, there was no easy way of finding many errors and other unusual patterns that might merit further investigation.

Clients do tend to be payers, who are looking to stamp out waste and not be forced to pay for claims that they later learn to be improper. But Fox said that institutions such as large providers, integrated delivery networks, and accountable care organizations might be interested in this kind of service to avoid trouble with Medicare auditors and the U.S. Department of Justice as federal officials step up their anti-fraud activities.

With the advent of accountable care organizations and other elements of healthcare reform, financial risk is going to be shared among multiple entities, offering yet another reason to stamp out internal waste and fraud, according to Fox. "We'll likely see more interest from providers," he said.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
anon7968745131
50%
50%
anon7968745131,
User Rank: Apprentice
11/28/2013 | 6:22:57 AM
business intelligence services
SQIAR (http://www.sqiar.com/solutions/technology/tableau) is a leading global consultancy which provides innovative business intelligence services to small and medium size (SMEs) businesses. Our agile approach provides organizations with breakthrough insights and powerful data visualizations to rapidly analyse multiple aspects of their business in perspectives that matter most.
Register for Dark Reading Newsletters
White Papers
Cartoon
Current Issue
Flash Poll
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2014-6090
Published: 2015-04-27
Multiple cross-site request forgery (CSRF) vulnerabilities in the (1) DataMappingEditorCommands, (2) DatastoreEditorCommands, and (3) IEGEditorCommands servlets in IBM Curam Social Program Management (SPM) 5.2 SP6 before EP6, 6.0 SP2 before EP26, 6.0.3 before 6.0.3.0 iFix8, 6.0.4 before 6.0.4.5 iFix...

CVE-2014-6092
Published: 2015-04-27
IBM Curam Social Program Management (SPM) 5.2 before SP6 EP6, 6.0 SP2 before EP26, 6.0.4 before 6.0.4.6, and 6.0.5 before 6.0.5.6 requires failed-login handling for web-service accounts to have the same lockout policy as for standard user accounts, which makes it easier for remote attackers to cause...

CVE-2015-0113
Published: 2015-04-27
The Jazz help system in IBM Rational Collaborative Lifecycle Management 4.0 through 5.0.2, Rational Quality Manager 4.0 through 4.0.7 and 5.0 through 5.0.2, Rational Team Concert 4.0 through 4.0.7 and 5.0 through 5.0.2, Rational Requirements Composer 4.0 through 4.0.7, Rational DOORS Next Generation...

CVE-2015-0174
Published: 2015-04-27
The SNMP implementation in IBM WebSphere Application Server (WAS) 8.5 before 8.5.5.5 does not properly handle configuration data, which allows remote authenticated users to obtain sensitive information via unspecified vectors.

CVE-2015-0175
Published: 2015-04-27
IBM WebSphere Application Server (WAS) 8.5 Liberty Profile before 8.5.5.5 does not properly implement authData elements, which allows remote authenticated users to gain privileges via unspecified vectors.

Dark Reading Radio
Archived Dark Reading Radio
Join security and risk expert John Pironti and Dark Reading Editor-in-Chief Tim Wilson for a live online discussion of the sea-changing shift in security strategy and the many ways it is affecting IT and business.