News
4/6/2010
12:15 PM
George Crump
George Crump
Commentary
Connect Directly
RSS
E-Mail
50%
50%

What Is Zero Detect?

There is a term you are going to start hearing more of in storage circles; Zero Detect. Some storage systems that offer thin provisioning are adding the ability to detect areas of a volume that have been zeroed out so they can reclaim that space and use it elsewhere. Zero detect becomes a critical component as we advance the capabilities of thin provisioning.

There is a term you are going to start hearing more of in storage circles; Zero Detect. Some storage systems that offer thin provisioning are adding the ability to detect areas of a volume that have been zeroed out so they can reclaim that space and use it elsewhere. Zero detect becomes a critical component as we advance the capabilities of thin provisioning.Most file systems when they are told to delete a file, simply mark the area as available to be overwritten, they don't actually remove anything. This creates a challenge for storage systems that offer thin provisioning. If you delete a large amount of data to free up capacity, the thin provisioning system will not be able to understand what happened and reclaim that capacity. The result is that overtime thin provisioned systems used to "gain weight" as files were deleted from the file system. In other words the thinly provisioned volumes most efficient day was its first.

Despite this shortcoming, thin provisioning has caught on, almost becoming a required feature. The ability to only allocate capacity as it was needed, even if you could not later reclaim that capacity, still saves many organizations lots of wasted capacity. The ideal situation is to be able to reclaim the deleted space as well and the next era of thin provisioning will be defined by vendors that can advance the state of the art to address this challenge.

Which brings us to zero detect. As I said earlier a file system does not automatically zero out deleted blocks. It just marks them available to be overwritten. A separate utility will have to be run that will scan the file system for deleted files and then zero them out. Once thats done the zero detect aware thin provisioning system can scan the volume and identify the blocks that have been zero'ed out and reclaim those areas. While this adds a few extra tasks to the storage administrator's todo list, imagine being able to reclaim TB's of capacity. This will likely become a housekeeping chore that is run once a week or month but the return could be well worth the investment in time.

Zero detect does let a few worms sneak out of the can though. There will be issues with how many consecutive blocks of deletion are available before the space can be reclaimed and all of this scanning is going to take processing power on both the attached server and especially on the storage system. Storage system suppliers will have to come up with ways to address at least the later.

The ideal solution may be to have a file system that is thin aware and communicates directly with the storage systems. This would allow the storage systems to reclaim the space as soon as it becomes available. The communication would eliminate the need for a separate maintenance process as well as reduce the impact on server and storage processors.

There is an effort within the Technical Committee T11, which is the committee within INCITS to produce a standard interface between file systems and thin provisioned storage systems. Until this standard becomes ratified and established it is going to be on the file system vendors and storage hardware vendors to work together. Until that time though the zero detect method may be the only way to enable thin reclamation.

Track us on Twitter: http://twitter.com/storageswiss

Subscribe to our RSS feed.

George Crump is lead analyst of Storage Switzerland, an IT analyst firm focused on the storage and virtualization segments. Find Storage Switzerland's disclosure statement here.

Comment  | 
Print  | 
More Insights
Register for Dark Reading Newsletters
Partner Perspectives
What's This?
In a digital world inundated with advanced security threats, Intel Security seeks to transform how we live and work to keep our information secure. Through hardware and software development, Intel Security delivers robust solutions that integrate security into every layer of every digital device. In combining the security expertise of McAfee with the innovation, performance, and trust of Intel, this vision becomes a reality.

As we rely on technology to enhance our everyday and business life, we must too consider the security of the intellectual property and confidential data that is housed on these devices. As we increase the number of devices we use, we increase the number of gateways and opportunity for security threats. Intel Security takes the “security connected” approach to ensure that every device is secure, and that all security solutions are seamlessly integrated.
Featured Writers
White Papers
Cartoon
Current Issue
Dark Reading's October Tech Digest
Fast data analysis can stymie attacks and strengthen enterprise security. Does your team have the data smarts?
Flash Poll
10 Recommendations for Outsourcing Security
10 Recommendations for Outsourcing Security
Enterprises today have a wide range of third-party options to help improve their defenses, including MSSPs, auditing and penetration testing, and DDoS protection. But are there situations in which a service provider might actually increase risk?
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2014-3409
Published: 2014-10-25
The Ethernet Connectivity Fault Management (CFM) handling feature in Cisco IOS 12.2(33)SRE9a and earlier and IOS XE 3.13S and earlier allows remote attackers to cause a denial of service (device reload) via malformed CFM packets, aka Bug ID CSCuq93406.

CVE-2014-4620
Published: 2014-10-25
The EMC NetWorker Module for MEDITECH (aka NMMEDI) 3.0 build 87 through 90, when EMC RecoverPoint and Plink are used, stores cleartext RecoverPoint Appliance credentials in nsrmedisv.raw log files, which allows local users to obtain sensitive information by reading these files.

CVE-2014-4623
Published: 2014-10-25
EMC Avamar 6.0.x, 6.1.x, and 7.0.x in Avamar Data Store (ADS) GEN4(S) and Avamar Virtual Edition (AVE), when Password Hardening before 2.0.0.4 is enabled, uses UNIX DES crypt for password hashing, which makes it easier for context-dependent attackers to obtain cleartext passwords via a brute-force a...

CVE-2014-4624
Published: 2014-10-25
EMC Avamar Data Store (ADS) and Avamar Virtual Edition (AVE) 6.x and 7.0.x through 7.0.2-43 do not require authentication for Java API calls, which allows remote attackers to discover grid MCUser and GSAN passwords via a crafted call.

CVE-2014-6151
Published: 2014-10-25
CRLF injection vulnerability in IBM Tivoli Integrated Portal (TIP) 2.2.x allows remote authenticated users to inject arbitrary HTTP headers and conduct HTTP response splitting attacks via unspecified vectors.

Best of the Web
Dark Reading Radio
Archived Dark Reading Radio
Follow Dark Reading editors into the field as they talk with noted experts from the security world.