Attacks/Breaches

2/11/2014
02:12 PM
Connect Directly
Google+
Twitter
RSS
E-Mail
50%
50%

TSA Carry-On Baggage Scanners Easy To Hack

Researchers reveal weak security that could allow malicious insiders or attackers to spoof the contents of carry-on baggage

KASPERSKY SECURITY ANALYST SUMMIT 2014 -- Punta Cana, Dominican Republic -- A widely deployed carry-on baggage X-ray scanner used in most airports could easily be manipulated by a malicious TSA insider or an outside attacker to sneak weapons or other banned items past airline security checkpoints.

Billy Rios, director of threat intelligence at Qualys, here today said he and colleague Terry McCorkle purchased a secondhand Rapiscan 522 B X-ray system via eBay and found several blatant security weaknesses that leave the equipment vulnerable to abuse: It runs on the outdated Windows 98 operating system, stores user credentials in plain text, and includes a feature called Threat Image Projection used to train screeners by injecting .bmp images of contraband, such as a gun or knife, into a passenger carry-on in order to test the screener's reaction during training sessions. The weak logins could allow a bad guy to project phony images on the X-ray display.

"The worst-case scenario is someone manipulates this in a way that the operator doesn't know a threat is in the bag ... by design, the software allows you to manipulate the image for training [purposes]," he says.

"The TSA requires this super-dangerous feature on all of these baggage scanners," Rios says.

The researchers have reported the flaws to ICS-CERT. Rapiscan Systems had not responded to a press inquiry for this article at the time of this posting.

"This reminded me a lot of voting machines. When you design these government systems under procurement rules, you end up using old stuff. No one is paying attention to updating it, so security is crap because no one is analyzing it," says Bruce Schneier, CTO of Co3 Systems. "Stuff done in secret gets really shoddy security ... We know what gives us security is the constant interplay between the research community and vendors."

The Rapiscan vulnerabilities only scratch the surface of security weaknesses in the TSA screening systems in U.S. airports, Rios says. He and McCorkle also plan to experiment with other equipment used at TSA security checkpoints, and to explore whether the so-called TSANet network that links major hubs like Atlanta, Chicago, and LAX airports could be accessed via a WiFi or cable in the airport, for example. "If we can get to that network from WiFi [or cable], that would be pretty interesting," Rios says.

Rapiscan has a rocky history with TSA: Last year, it lost its contract with the feds for its backscatter body scanners after failing to address privacy issues raised about the detailed body images the system produced and stored. Most recently, the baggage scanner system contract was canceled after TSA learned that the X-ray machines contain a light bulb that was manufactured by a Chinese company. (TSA systems cannot include foreign-made parts).

Rapiscan's baggage scanners remain in most airports, meanwhile, even though its contract with TSA is now defunct.

Rios and McCorkle were able to bypass the login screen merely by typing in a user name with a special character, which forced an error and then logged them in. In addition, they were able to see stored user credentials in clear text in the simple database store. A screener, which is a lower-level user of the system, could easily escalate his privileges by grabbing one of those logins from an unprotected file in the system, or via the login bypass flaw. "There's no two-factor" authentication in the console, Rios says.

"These bugs are actually embarrassing. It was embarrassing to report them to DHS -- the ability to bypass the login screen. These are really lame bugs," Rios says.

But it's not really the vendor's fault when it comes to these types of weaknesses, he says. "The TSA had no device cybersecurity policy. It's the TSA's fault," he says. "The TSA operators have no expertise if the device is compromised, and they could be put in very precarious positions."

The good news is that the researchers have seen no evidence of the TSA carry-on baggage screening systems being connected to the Internet. Even so, Rios says, it would only take one malicious insider from one airport to wreak havoc on TSA checkpoint security.

Have a comment on this story? Please click "Add Your Comment" below. If you'd like to contact Dark Reading's editors directly, send us a message. Kelly Jackson Higgins is Executive Editor at DarkReading.com. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
jgeiss4p
50%
50%
jgeiss4p,
User Rank: Apprentice
2/12/2014 | 2:19:49 PM
re: TSA Carry-On Baggage Scanners Easy To Hack
So... if the guy working the machine is a 'bad guy', then he might be able to hack the machine to put the image of a pair of mickey mouse underwear over the bomb or gun in the case... interesting. But... if he's the guy working the machine, wouldn't it just be easier for him to ensure that he's the only one looking at the screen when the bad bag comes through, then just ignore what he's seeing?
And, how do you 'program' the scanner to work for just the one bag... create a barcode of metal dots in the lining so that it can be recognized by the program and then input the false reading??
Really... do articles like this get paid for by Rapiscan's competitors?
Devastating Cyberattack on Email Provider Destroys 18 Years of Data
Jai Vijayan, Freelance writer,  2/12/2019
Up to 100,000 Reported Affected in Landmark White Data Breach
Kelly Sheridan, Staff Editor, Dark Reading,  2/12/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
5 Emerging Cyber Threats to Watch for in 2019
Online attackers are constantly developing new, innovative ways to break into the enterprise. This Dark Reading Tech Digest gives an in-depth look at five emerging attack trends and exploits your security team should look out for, along with helpful recommendations on how you can prevent your organization from falling victim.
Flash Poll
How Enterprises Are Attacking the Cybersecurity Problem
How Enterprises Are Attacking the Cybersecurity Problem
Data breach fears and the need to comply with regulations such as GDPR are two major drivers increased spending on security products and technologies. But other factors are contributing to the trend as well. Find out more about how enterprises are attacking the cybersecurity problem by reading our report today.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-8354
PUBLISHED: 2019-02-15
An issue was discovered in SoX 14.4.2. lsx_make_lpf in effect_i_dsp.c has an integer overflow on the result of multiplication fed into malloc. When the buffer is allocated, it is smaller than expected, leading to a heap-based buffer overflow.
CVE-2019-8355
PUBLISHED: 2019-02-15
An issue was discovered in SoX 14.4.2. In xmalloc.h, there is an integer overflow on the result of multiplication fed into the lsx_valloc macro that wraps malloc. When the buffer is allocated, it is smaller than expected, leading to a heap-based buffer overflow in channels_start in remix.c.
CVE-2019-8356
PUBLISHED: 2019-02-15
An issue was discovered in SoX 14.4.2. One of the arguments to bitrv2 in fft4g.c is not guarded, such that it can lead to write access outside of the statically declared array, aka a stack-based buffer overflow.
CVE-2019-8357
PUBLISHED: 2019-02-15
An issue was discovered in SoX 14.4.2. lsx_make_lpf in effect_i_dsp.c allows a NULL pointer dereference.
CVE-2013-2516
PUBLISHED: 2019-02-15
Vulnerability in FileUtils v0.7, Ruby Gem Fileutils <= v0.7 Command Injection vulnerability in user supplied url variable that is passed to the shell.