Attacks/Breaches

4/25/2013
07:29 AM
Dark Reading
Dark Reading
Quick Hits
50%
50%

How Cybercriminals Attack The Cloud

What attacks are most likely against cloud computing environments? Here's a look -- and some advice

[Excerpted from "How Cybercriminals Attack the Cloud," a new report posted this week on Dark Reading's Cloud Security Tech Center.]

The adoption of cloud-based computing shows no signs of slowing. Indeed, cloud services are expanding at an incredible rate across all sectors of the economy, with the market for public cloud services expected to grow to $210 billion by 2016, according to Gartner.

And it's no wonder: The cloud is a compelling proposition for businesses and government agencies alike, offering easy access to shared, elastically allocated computing resources. The model creates savings on capital expenditures and reduces the running costs of operating a network, allowing enterprises to focus more on their core operations instead of IT.

However, what makes cloud computing so attractive to businesses -- the sharing of resources to achieve economies of scale -- also makes the model attractive to cybercriminals.

Cloud services concentrate so much data in one place that they become very attractive targets, justifying a large investment in a hacker's time and resources. Recent researchby the European Network and Information Securit Agency has led it to warn, "The proliferation of cloud computing and the sheer concentration of users and data on rather few logical locations are definitely an attractive target for future attacks."

What types of attacks are most common against cloud environments? Volumetric attacks aim to overwhelm a network's infrastructure with bandwidth-consuming

traffic or resource-sapping requests.

State-exhaustion attacks, such as TCP SYN flood and idle session attacks, abuse the stateful nature of TCP to exhaust resources in servers, load balancers and firewalls. Several cloud providers saw their firewalls fail last year during DDoS attacks.

Techniques such as amplification magnify the amount of bandwidth that can be used to target a potential victim. Suppose an attacker is able to generate 100 Mbps of traffic with his botnet. This may inconvenience or block access to a small site, but it would not impact a well-protected cloud hosted site or service.

The attacker could go to a botnet herder to rent access to its botnet, but this could get expensive. The attacker also could use manual and automated coordination techniques similar to those used by the Anonymous group, which notifies fellow "anons" of the time to start an attack so that it's big enough to affect the victim's resources.

By using an amplification technique called DNS reflection, an attacker's botnet can send out a DNS query of about 60 bytes to an open recursive DNS resolver that will gener-ate a response message sent to the victim of up to 4,000 bytes, increasing the amount of attack traffic by a factor of more than 60. The DNS protocol is ideal for this type of attack because queries can be sent with a spoofed source address -- using User Datagram Protocol, which doesn't require a handshake -- and a DNS response is significantly larger than the query itself.

To learn more about the different types of attacks made on cloud computing environments -- and what you can do about them -- download the free report.

Have a comment on this story? Please click "Add a Comment" below. If you'd like to contact Dark Reading's editors directly, send us a message.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Companies Blindly Believe They've Locked Down Users' Mobile Use
Dawn Kawamoto, Associate Editor, Dark Reading,  11/14/2017
Microsoft Word Vuln Went Unnoticed for 17 Years: Report
Kelly Sheridan, Associate Editor, Dark Reading,  11/14/2017
121 Pieces of Malware Flagged on NSA Employee's Home Computer
Kelly Jackson Higgins, Executive Editor at Dark Reading,  11/16/2017
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Managing Cyber-Risk
An online breach could have a huge impact on your organization. Here are some strategies for measuring and managing that risk.
Flash Poll
The State of Ransomware
The State of Ransomware
Ransomware has become one of the most prevalent new cybersecurity threats faced by today's enterprises. This new report from Dark Reading includes feedback from IT and IT security professionals about their organization's ransomware experiences, defense plans, and malware challenges. Find out what they had to say!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2017-0290
Published: 2017-05-09
NScript in mpengine in Microsoft Malware Protection Engine with Engine Version before 1.1.13704.0, as used in Windows Defender and other products, allows remote attackers to execute arbitrary code or cause a denial of service (type confusion and application crash) via crafted JavaScript code within ...

CVE-2016-10369
Published: 2017-05-08
unixsocket.c in lxterminal through 0.3.0 insecurely uses /tmp for a socket file, allowing a local user to cause a denial of service (preventing terminal launch), or possibly have other impact (bypassing terminal access control).

CVE-2016-8202
Published: 2017-05-08
A privilege escalation vulnerability in Brocade Fibre Channel SAN products running Brocade Fabric OS (FOS) releases earlier than v7.4.1d and v8.0.1b could allow an authenticated attacker to elevate the privileges of user accounts accessing the system via command line interface. With affected version...

CVE-2016-8209
Published: 2017-05-08
Improper checks for unusual or exceptional conditions in Brocade NetIron 05.8.00 and later releases up to and including 06.1.00, when the Management Module is continuously scanned on port 22, may allow attackers to cause a denial of service (crash and reload) of the management module.

CVE-2017-0890
Published: 2017-05-08
Nextcloud Server before 11.0.3 is vulnerable to an inadequate escaping leading to a XSS vulnerability in the search module. To be exploitable a user has to write or paste malicious content into the search dialogue.