Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Mobile Security //

Cellular Network

// // //
1/29/2019
09:35 AM
Jonathan Nguyen-Duy
Jonathan Nguyen-Duy
News Analysis-Security Now

5G Security Transformation: Why Businesses Need to Prepare Now

5G technology holds a good deal of promise for businesses, from expanded IoT capabilities to new ways to reach customers. The downside is that these networks require a new security approach, which InfoSec teams need to start thinking about now.

New 5G networks will offer faster speeds, lower latency and more reliable connections, launching a new era of wireless networking and connected solutions.

As a result, it is projected that the number of 5G users will grow to more than a billion by 2023. Many of these customers will take advantage of 5G speeds to deploy new Internet of Things and connected devices that employ edge-based computing to process huge volumes of data. To address this explosive rate of growth and innovation, businesses need to begin supporting the networks, applications, users and cybersecurity demands that will be part of this evolution.

Three critical service domains5G will converge all existing wireless networking services, including mobile devices, WiFi, near field communications and Bluetooth, under a single technological umbrella. Supports of the technology envision three new domains of services:

  • Enhanced Mobile Broadband (eMBB): This will be a lot like existing portfolios of cellular communications services, but significantly faster and with more subscriber capacity.
  • Ultra-Reliable Low Latency Communications (URLLC): This domain will provide services for autonomous vehicles, industrial devices, and connected electro-mechanical systems.
  • Massive Machine Type Communications (MMTC): This third area will provide a fabric for interconnecting IoT applications, which will be essential for the continued growth of the digital economy.

5G will power additional critical changes Wireless networking will also evolve from a service provider-operated infrastructure into an open platform that will spur product and service innovation. This includes innovations including virtually unlimited capacity, service convergence and dedicated roles for industrial and IoT services.

(Source: iStock)
(Source: iStock)

5G technology will also enable the migration of computing power and storage from remote data centers and cloud installations to the network edge. By provisioning computing services closer to end users, 5G servers will acquire enough intelligence to act as application servers, and 5G service providers will be able to offer additional base station capacity to third parties seeking to deliver new applications and services to end users.

These new services will likely include a mix of established mobile computing services (navigation, entertainment, delivery and payment systems), previously non-mobile services (industrial environments, physical access control and office networks), innovative services (such as autonomous vehicles, augmented/virtual reality, cash register-less retail), as well as applications and services we haven't even imagined yet.

Security implications of 5GDisrupting traditional relationships between networks, computing resources and end users will also have a tremendous impact on cybersecurity. These include:

    • Increased critical infrastructure risks: Protecting today's electrical grid, water systems, fuel pipelines and other critical national infrastructure from Internet-borne attack is a full-time job for many organizations. What happens when HVAC, physical security, access control systems, elevators, power control systems, as well as private and public vehicles, flying drones and institutional and personal healthcare devices all become 5G-enabled?

 

  • Securing edge resources: Migrating workloads to 5G edge-computing resources combines the cybersecurity risks of endpoint computing with those of cloud computing. How will organizations monitor and maintain thousands of computing nodes to which they have limited access rights, and that can come and go as their owners shift workloads around?

 

 

  • The vanishing perimeter and hybrid computing: By now, cybersecurity professionals have gotten used to the idea that the perimeter has become ambiguous and porous. But what happens when all wireless networks converge into 5G, connectivity becomes amorphous and hybrid computing becomes the norm? Many new IoT solutions will be tied to critical business processes and even life-saving functions that rely on massive amounts of data and near-real time computing at the edge.

 

Security must support elastic, edge-to-edge hybrid solutions employing proven traditional strategies as well as new approaches. While network segmentation has been positioned as an effective technique for containing cybersecurity risks and protecting sensitive resources, old strategies may not apply in a 5G world. New segmentation strategies will need to navigate local and remote resources that mix segments that you may or may not have the rights to control.

Cybersecurity as change enablerThe key to addressing the coming security challenges of 5G networks is to be proactive. Fortunately, security professionals have the unique opportunity to build security into their 5G projects right at the beginning. In many cases, this involves applying the security lessons from the current generation of computing and networking solutions. And fortunately, many of the cybersecurity technologies and techniques available today can reduce the potential for harm:

    • Upgrade your threat intelligence: Many 5G threats and exploits will be completely new -- both in how and what they attack. Addressing cybercriminal innovation during the early days of the 5G learning curve will require continually collecting, upgrading and honing threat intelligence. Combining this intelligence with emerging Intent-Based Network Security strategies that leverage machine learning and AI will help organizations see and prepare for evolving threats.

 

  • Strengthen your access controls: As more people and devices access 5G networks, access controls will play an increasingly critical role in any cybersecurity strategy. The sooner organizations begin operating their IT infrastructures on a zero-trust basis -- where security is built around the data and every device and request for network access is verified, validated and authenticated -- the better. Zero trust networking principles and distributed segmentation offer proven approaches that will translate well to these new networks.

 

 

  • Deploy integrated security architectures: Vendors have begun to offer fabric-based approaches to security that can be automatically stretched and trimmed to match dynamically changing network environments. Such automated adaptability is an especially valuable attribute of any security approach during times of rapid change. The most advanced of today's security fabrics are adopting software-defined network (SDN) technologies to stay ahead of criminal activity and network congestion, enabling them to quickly deploy new or updated capabilities simultaneously across the entire distributed network, and assign devices to automatically address detected shifts in attacks and network behavior. Deep packet inspection, automated playbooks and advanced network management will be key to detecting and mitigating threats in 5G networks.

 

5G offers the promise of tremendously faster connectivity across a vast expansion in connected systems, creating more innovation, productivity and quality-of-life outcomes.

To prepare for this opportunity, you need to do three things. First, cybersecurity technologies and best practices need to be seen as enabling strategies rather than as an added cost and complexity tax on innovation. Second, if you prepare now, security worries won't get in the way of your organization's ability to reap the benefits of 5G. And finally, don't wait until you deploy 5G to start thinking about implementing an integrated security fabric framework.

Related posts:

Jonathan Nguyen-Duy is vice president of strategy and analytics at Fortinet, where he focuses on emerging technologies and key partnerships. He has unique global government and commercial experience with a deep understanding of threats, technology, compliance and business issues..

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Edge-DRsplash-10-edge-articles
I Smell a RAT! New Cybersecurity Threats for the Crypto Industry
David Trepp, Partner, IT Assurance with accounting and advisory firm BPM LLP,  7/9/2021
News
Attacks on Kaseya Servers Led to Ransomware in Less Than 2 Hours
Robert Lemos, Contributing Writer,  7/7/2021
Commentary
It's in the Game (but It Shouldn't Be)
Tal Memran, Cybersecurity Expert, CYE,  7/9/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Everything You Need to Know About DNS Attacks
It's important to understand DNS, potential attacks against it, and the tools and techniques required to defend DNS infrastructure. This report answers all the questions you were afraid to ask. Domain Name Service (DNS) is a critical part of any organization's digital infrastructure, but it's also one of the least understood. DNS is designed to be invisible to business professionals, IT stakeholders, and many security professionals, but DNS's threat surface is large and widely targeted. Attackers are causing a great deal of damage with an array of attacks such as denial of service, DNS cache poisoning, DNS hijackin, DNS tunneling, and DNS dangling. They are using DNS infrastructure to take control of inbound and outbound communications and preventing users from accessing the applications they are looking for. To stop attacks on DNS, security teams need to shore up the organization's security hygiene around DNS infrastructure, implement controls such as DNSSEC, and monitor DNS traffic
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2023-33196
PUBLISHED: 2023-05-26
Craft is a CMS for creating custom digital experiences. Cross site scripting (XSS) can be triggered by review volumes. This issue has been fixed in version 4.4.7.
CVE-2023-33185
PUBLISHED: 2023-05-26
Django-SES is a drop-in mail backend for Django. The django_ses library implements a mail backend for Django using AWS Simple Email Service. The library exports the `SESEventWebhookView class` intended to receive signed requests from AWS to handle email bounces, subscriptions, etc. These requests ar...
CVE-2023-33187
PUBLISHED: 2023-05-26
Highlight is an open source, full-stack monitoring platform. Highlight may record passwords on customer deployments when a password html input is switched to `type="text"` via a javascript "Show Password" button. This differs from the expected behavior which always obfuscates `ty...
CVE-2023-33194
PUBLISHED: 2023-05-26
Craft is a CMS for creating custom digital experiences on the web.The platform does not filter input and encode output in Quick Post validation error message, which can deliver an XSS payload. Old CVE fixed the XSS in label HTML but didn’t fix it when clicking save. This issue was...
CVE-2023-2879
PUBLISHED: 2023-05-26
GDSDB infinite loop in Wireshark 4.0.0 to 4.0.5 and 3.6.0 to 3.6.13 allows denial of service via packet injection or crafted capture file