Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Endpoint Security

// // //
11/16/2018
08:05 AM
Larry Loeb
Larry Loeb
Larry Loeb

New Spectre & Meltdown Attacks Show Limits of CPU Vulnerabilities

A group of researchers from Belgium, Austria and the US have uncovered more Spectre and Meltdown flaws in CPU architectures, but their paper also shows the limits of these vulnerabilities in real-world attacks.

The class of CPU side-channel vulnerabilities dubbed Spectre and Meltdown arose suddenly in the early part of this year. These hardware flaws are the result of exception or branch misprediction events that can leave secret-dependent traces in the chip's microarchitectural state.

The style of CPU architecture that allows these vulnerabilities has been in use since 1995. (See MIT Researchers Have a DAWG in the Fight Against Spectre & Meltdown.)

Spectre-style attacks break the isolation between applications that is enforced by CPU memory management. Meltdown-style attacks break the fundamental isolation between user applications and the operating system.

The chip industry has been exceedingly busy trying to fix with ad-hoc defenses -- microcode and software patches -- these vulnerabilities, as well as other variants, which have been obviously broken for decades. (See Intel's 9th Gen Processors Offer Protections Against Spectre & Meltdown .)

However, what has not been done up until now is to try and figure out the underlying problems that make these attacks possible.

In a paper entitled, "A Systematic Evaluation of Transient Execution Attacks and Defenses," nine academics -- including those who first discovered Spectre and Meltdown -- try to perform what they deem "a sound and extensible systematization of transient execution attacks." Rather than concentrate on specific examples of attacks, they attempt to draw a wider perspective on all the possible hardware areas that can be attacked.

(Source: iStock)
(Source: iStock)

The researchers use the term "transient execution attacks" since the attacks focus on the CPU hardware that affects instructions, which are executed transiently: The instructions and operations are first created by the extensions in the CPU pipeline, and then they vanish.

Importantly, the researchers note that "transient execution attacks are not limited to the cache: any microarchitectural state that can be changed and observed can be used."

Most attacks seen thus far have used cache state as the way they infer what is really going on in the CPU. To stress that there are more side-channels than just a cache is an important point the researchers make.

By focusing on the hardware areas one-by-one, the researchers found new kinds of attacks as well as ones that would not work.

As far as Meltdown goes, the ones that worked were Meltdown-BR, which exploits an x86 bound instruction on Intel and AMD CPUs, and Meltdown-PK, which bypasses memory protection keys on Intel CPUs.

The academics also found Meltdown attacks did not work on memory alignment check exceptions, division by zero errors, the supervisor mode access prevention (SMAP) mechanism, out-of-limit segment accesses, invalid opcode exception, and non-executable memory.

Three new Spectre attacks that involve the Pattern History Table mechanism were also found, as well as two new ones that use the Branch Target Buffer as a target. The new attacks were possible on AMD, ARM, and Intel CPUs.

Overall, what the paper presents is not truly earth shattering.

It's more an extension of what has already been observed with more detail and texture given. The way that the researchers look at defenses against these sort of exploits is only theoretical. In the paper, they acknowledge that "we need to think about future defenses carefully and plan to mitigate attacks and variants that are unknown."

Yes, the researchers found seven new kinds of attacks. But that is balanced by the group finding six kinds of attacks that we probably don't have to worry about.

Related posts:

— Larry Loeb has written for many of the last century's major "dead tree" computer magazines, having been, among other things, a consulting editor for BYTE magazine and senior editor for the launch of WebWeek.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Edge-DRsplash-10-edge-articles
I Smell a RAT! New Cybersecurity Threats for the Crypto Industry
David Trepp, Partner, IT Assurance with accounting and advisory firm BPM LLP,  7/9/2021
News
Attacks on Kaseya Servers Led to Ransomware in Less Than 2 Hours
Robert Lemos, Contributing Writer,  7/7/2021
Commentary
It's in the Game (but It Shouldn't Be)
Tal Memran, Cybersecurity Expert, CYE,  7/9/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
The Promise and Reality of Cloud Security
Cloud security has been part of the cybersecurity conversation for years but has been on the sidelines for most enterprises. The shift to remote work during the COVID-19 pandemic and digital transformation projects have moved cloud infrastructure front-and-center as enterprises address the associated security risks. This report - a compilation of cutting-edge Black Hat research, in-depth Omdia analysis, and comprehensive Dark Reading reporting - explores how cloud security is rapidly evolving.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2023-25168
PUBLISHED: 2023-02-09
Wings is Pterodactyl's server control plane. This vulnerability can be used to delete files and directories recursively on the host system. This vulnerability can be combined with `GHSA-p8r3-83r8-jwj5` to overwrite files on the host system. In order to use this exploit, an attacker must have an exis...
CVE-2023-0249
PUBLISHED: 2023-02-08
Delta Electronics DIAScreen versions 1.2.1.23 and prior are vulnerable to out-of-bounds write, which may allow an attacker to remotely execute arbitrary code.
CVE-2023-0250
PUBLISHED: 2023-02-08
Delta Electronics DIAScreen versions 1.2.1.23 and prior are vulnerable to a stack-based buffer overflow, which could allow an attacker to remotely execute arbitrary code.
CVE-2023-0251
PUBLISHED: 2023-02-08
Delta Electronics DIAScreen versions 1.2.1.23 and prior are vulnerable to a buffer overflow through improper restrictions of operations within memory, which could allow an attacker to remotely execute arbitrary code.
CVE-2022-38777
PUBLISHED: 2023-02-08
An issue was discovered in the rollback feature of Elastic Endpoint Security for Windows, which could allow unprivileged users to elevate their privileges to those of the LocalSystem account.