Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

Quantum Cryptography Breached With Lasers

Using lasers to blind quantum cryptography photon detectors, Norwegian computer scientists were able to obtain a copy of a secure key without leaving any trace of their presence.




Strategic Security Survey: Global Threat, Local Pain
(click for larger image and for full photo gallery)

Norwegian computer scientists have perfected a laser-based attack against quantum cryptography systems that allows them to eavesdrop on communications without revealing their presence.

One of the biggest commercial uses for quantum cryptography to date has been to securely exchange keys. Unlike traditional key distribution techniques, using quantum mechanics offers a seemingly foolproof upside: any attempt by an attacker to measure quantum data disturbs it -- per the Heisenberg uncertainty principle -- which a quantum cryptography system can detect, thus ensuring that communications remain secure.

Enter the laser. The team of researchers from the Norwegian University of Science and Technology (NTNU), the University of Erlangen-Nürnberg and the Max Planck Institute for the Science of Light in Erlangen developed a quantum eavesdropping technique that remotely controls the photon detector, which is a key component in most quantum cryptography systems.

According to Gerd Leuchs, who's part of the research team, "the security of quantum cryptography relies on quantum physics but … it must also be properly implemented." In other words, any system may have implementation loopholes. The attack works by blinding the photon detector with a bright light -- the laser. Over its continuous wave of light, the researchers then added even stronger laser pulses to transmit data, but in a way that the quantum cryptography security system can't detect, because it doesn't involve quantum mechanics.

The researchers reported their findings in an advance online version of Nature Photonics, released last week. "Based on these experimental results," they write, someone "can attack the systems with off-the-shelf components, obtaining a perfect copy of the raw key without leaving any trace of her presence." With the key in hand, communications between the two key sharers could then be intercepted and decrypted, again without either party knowing.

One of the authors of the study, Vadim Makarov, who's a researcher in the quantum hacking group at NTNU, said that "unlike previously published attempts, this attack is implementable with current, off-the-shelf components."

The researchers demonstrated the technique against two products -- MagiQ Technology's QPN 5505 and ID Quantique Clavis2 systems -- but the vulnerability potentially applies to any such product. "The security loophole we have exposed is intrinsic to a whole class of single-photon detectors, regardless of their manufacturer and model," said Makarov.

Before publishing their research, the team disclosed the vulnerabilities to both of the manufacturers, and also worked with ID Quantique to create a countermeasure. While that countermeasure hasn't been detailed, in their published article, the researchers suggest adding an optical power meter to quantum key-sharing systems, to watch for laser-wielding attackers.

MagiQ, meanwhile, has discontinued selling the affected product but not made any of its newer models available to the researchers for testing.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
A Realistic Threat Model for the Masses
Lysa Myers, Security Researcher, ESET,  10/9/2019
USB Drive Security Still Lags
Dark Reading Staff 10/9/2019
Virginia a Hot Spot For Cybersecurity Jobs
Jai Vijayan, Contributing Writer,  10/9/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
7 Threats & Disruptive Forces Changing the Face of Cybersecurity
This Dark Reading Tech Digest gives an in-depth look at the biggest emerging threats and disruptive forces that are changing the face of cybersecurity today.
Flash Poll
2019 Online Malware and Threats
2019 Online Malware and Threats
As cyberattacks become more frequent and more sophisticated, enterprise security teams are under unprecedented pressure to respond. Is your organization ready?
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-17612
PUBLISHED: 2019-10-15
An issue was discovered in 74CMS v5.2.8. There is a SQL Injection generated by the _list method in the Common/Controller/BackendController.class.php file via the index.php?m=Admin&c=Ad&a=category sort parameter.
CVE-2019-17613
PUBLISHED: 2019-10-15
qibosoft 7 allows remote code execution because do/jf.php makes eval calls. The attacker can use the Point Introduction Management feature to supply PHP code to be evaluated. Alternatively, the attacker can access admin/index.php?lfj=jfadmin&action=addjf via CSRF, as demonstrated by a payload in...
CVE-2019-17395
PUBLISHED: 2019-10-15
In the Rapid Gator application 0.7.1 for Android, the username and password are stored in the log during authentication, and may be available to attackers via logcat.
CVE-2019-17602
PUBLISHED: 2019-10-15
An issue was discovered in Zoho ManageEngine OpManager before 12.4 build 124089. The OPMDeviceDetailsServlet servlet is prone to SQL injection. Depending on the configuration, this vulnerability could be exploited unauthenticated or authenticated.
CVE-2019-17394
PUBLISHED: 2019-10-15
In the Seesaw Parent and Family application 6.2.5 for Android, the username and password are stored in the log during authentication, and may be available to attackers via logcat.