Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

Eavesdropper Steals Quantum Crypto Keys

So-called "perfect eavesdropper" steals keys while they're being negotiated, without alerting users.

Strategic Security Survey: Global Threat, LocalPain
Strategic Security Survey: Global Threat, Local Pain
(click image for larger view and for full slideshow)
Quantum cryptography may look great on paper, but how secure is it in practice?

In fact, a team of computer scientists from Norway and Singapore identified a vulnerability that would allow attackers to eavesdrop on quantum key distribution, which is used to create a secret, secure key between two parties. They demonstrated this exploit first against a research quantum cryptography system, built at the National University of Singapore, then published research detailing how the vulnerability existed--at least in principle--in commercial quantum cryptography key generation systems built by ID Quantique and MagiQ Technologies. Now, the team has made the jump to demonstrating it against a fully deployed research system.

The team has detailed their latest findings in a paper, "Full-field implementation of a perfect eavesdropper on a quantum cryptography system," published last week in Nature Communications. Vadim Makarov, a member of the research team who's a postdoctoral researcher at the University Graduate Center in Kjeller, Norway, has also provided a detailed, behind-the-scenes look at the research. The researchers said that they shared details of the vulnerability with commercial quantum cryptography vendors, who have patched any related vulnerability in their systems.

Quantum cryptography is attractive because it can be used to create key generation systems that detect whenever a third party is listening in, for example by intercepting packets. That's thanks to the Heisenberg uncertainty principle, which says that any attempt to measure quantum data will disturb it. As a result, two parties can be sure that no one has eavesdropped on their encryption keys, and that all data they subsequently transmit remains secure.

But systems that implement quantum cryptography for key generation--layered with classical key-generation systems for better security--are relatively new. Accordingly, security researchers are still hammering away at them to see what might break. In the case of the eavesdropping, the researchers discovered they could use a laser to force the photon detectors in the quantum system to behave in a traditional manner, robbing the system of its ability to detect an intrusion.

"This is the usual game in cryptography--a secure communications system is created and others try to break into it. In the end this makes the different approaches better," said Ilja Gerhardt, a member of the research team who's a visiting scholar at the University of British Columbia in Canada, in a statement.

What's interesting with quantum cryptography is that the flaws arise from implementations, rather than the cryptography itself. "What is really exciting about quantum cryptography is that for the first time in the long history of cryptography, we have a technique in which security is based not on unproven mathematical assumptions, but on the laws of physics," said Makarov. "However, as with any secure technique--classical and quantum alike--we also need to implement its founding principles properly into actual working devices."

Gregoire Ribordy, CEO of ID Quantique, said in a phone interview that his company works with Makarov's research group. "In security, the idea of quantum cryptography is that you can base security on quantum physics, but you also need to make sure that the implementation is correct. For us, that's why we think it's important that we have some collaboration with researchers."

Previous
1 of 2
Next
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
7 Tips for Choosing Security Metrics That Matter
Ericka Chickowski, Contributing Writer,  10/19/2020
IoT Vulnerability Disclosure Platform Launched
Dark Reading Staff 10/19/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-15270
PUBLISHED: 2020-10-22
Parse Server (npm package parse-server) broadcasts events to all clients without checking if the session token is valid. This allows clients with expired sessions to still receive subscription objects. It is not possible to create subscription objects with invalid session tokens. The issue is not pa...
CVE-2018-21266
PUBLISHED: 2020-10-22
** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Notes: none.
CVE-2018-21267
PUBLISHED: 2020-10-22
** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Notes: none.
CVE-2020-27673
PUBLISHED: 2020-10-22
An issue was discovered in the Linux kernel through 5.9.1, as used with Xen through 4.14.x. Guest OS users can cause a denial of service (host OS hang) via a high rate of events to dom0, aka CID-e99502f76271.
CVE-2020-27674
PUBLISHED: 2020-10-22
An issue was discovered in Xen through 4.14.x allowing x86 PV guest OS users to gain guest OS privileges by modifying kernel memory contents, because invalidation of TLB entries is mishandled during use of an INVLPG-like attack technique.