Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

6/15/2016
08:00 AM
Connect Directly
Google+
Twitter
RSS
E-Mail
50%
50%

Windows 'BadTunnel' Attack Hijacks Network Traffic

Newly discovered -- and now patched -- Windows design flaw affects all versions of Windows.

A researcher in China has discovered a design flaw in Microsoft Windows that affects all versions of the operating system—including Windows 10—and lets an attacker hijack a victim organization’s network traffic.

Microsoft this week issued a patch for the so-called “BadTunnel” bug found by Yang Yu, director of Xuanwu Lab of Tencent in Beijing. Yu will detail and demonstrate his findings on the Windows flaw in August at Black Hat USA in Las Vegas in his presentation BadTunnel: How Do I Get Big Brother Power? 

“This vulnerability has a massive security impact – probably the widest impact in the history of Windows,” Yu said an an interview with Dark Reading conducted via email. “It not only can be exploited through many different channels, but also exists in all Windows versions released during the past 20 years. It can be exploited silently with a near perfect success rate.”

BadTunnel isn’t a typical coding-error flaw: it’s a combination of issues that together allow for an exploit. “This vulnerability is caused by a series of seemingly correct implementations, which includes a transport layer protocol, an application layer protocol, a few specific usage of application protocol by the operating system, and several protocol implementations used by firewalls and NAT devices,” Yu explains.

It can be exploited via all versions of Microsoft Office, Edge, Internet Explorer, and via several third-party apps on Windows, he says. Unlike most attacks, it doesn’t even require malware, although an attacker could deploy malware as well, he says. That makes it even more difficult to detect when a BadTunnel attack is under way, he notes. An attacker could also execute the attack via IIS and Apache Web servers, as well as via a thumb drive.

Yu says BadTunnel is basically a technique for NetBIOS-spoofing across networks: the attacker can get access to network traffic without being on the victim’s network, and also bypass firewall and Network Address Translation (NAT) devices.  

It basically works like this: the attacker gets a victim to visit a rigged web page via IE or Edge, or to open a rigged Office document (or install a malicious flash drive). The attacker’s site appears as either a file server or a local print server, and hijacks the victim’s network traffic – HTTP, Windows Updates, and even Certificated Revocation List updates via Microsoft’s CryptoAPI.

BadTunnel exploits a series of security weaknesses, including how Windows resolves network names and accepts responses; how  IE and Edge browsers support webpages with embedded content; how Windows handles network paths via an IP address; how NetBIOS Name Service NB and NBSTAT queries handle transactions; and how Windows handles queries on the same UDP port (137) -- all of which when lumped together make the network vulnerable to a BadTunnel attack.

Here’s an attack scenario, as explained in Yu’s technical paper:

1.  Alice and Bob can be located anywhere on their network, and have firewall and NAT devices in-between, as long as Bob’s 137/UDP port is reachable by Alice.

2.  Bob closes 139 and 445 port, but listens on 137/UDP port.

3.  Alice is convinced to access a file URI or UNC path that points to Bob, and another hostname based URI such as “http://WPAD/x.jpg” or “http://FileServer/x.jpg”. Alice will send a NBNS NBSTAT query to Bob, and also send a NBNS NB query to the LAN broadcast address.

4.  If Bob blocks access to 139 and 445 port using a firewall, Alice will send a NBNS NBSTAT query after approximately 22 seconds. If Bob instead closed 139 and 445 port by disabling Server Windows service or NetBIOS over TCP/IP protocol, Alice do not need to wait for connection to time out before send the query.

5.  When Bob received NBNS NBSTAT query sent by Alice, Bob forge a NBNS NB response by predicting the transaction id, and send to Alice. If a heartbeat packet is sent every few second, most firewall and NAT devices will keep the 137/UDP<->137/UDP tunnel open.

6.  Alice will now add the resolved address sent by Bob to the NBT cache. The default TTL for NBT cache entry is 600 seconds.

Bob then hijacks Alice’s network traffic by posing as a Web Proxy Auto-Discovery Protocol (WPAD) or Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) server. WPAD hijacking is nothing new, Yu notes: HD Moore & Valsmith presented research on this in 2007 at Black Hat USA, and the Flame worm employed a similar attack method.

Black Hat USA returns to the fabulous Mandalay Bay in Las Vegas, Nevada July 30 through Aug. 4, 2016. Click for information on the conference schedule and to register.

 

Yu says his discovery of BadTunnel began during a flight last year. “One day last year, when I was on an airplane, I got bored. I started to imagine different security problems and suddenly came up with a brand new attack scenario,” he recalls. “After the trip, I immediately started testing on different system configurations, and finally discovered this vulnerability in the Windows operating system.”

Yu first reported his finding to Microsoft in January, he says. He says he’s not aware of any attacks in the wild.

His advice to Windows users: “For the average user, always make sure you have the latest available patches. If for some reason you can not install the patch, I suggest you disable the NetBIOS over TCP/IP to prevent BadTunnel attack,” he says.

Related Content:

 

 

Kelly Jackson Higgins is the Executive Editor of Dark Reading. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Frankie89
50%
50%
Frankie89,
User Rank: Apprentice
5/9/2017 | 5:18:59 PM
The security of homepages
really great post but at the and the weak spot is always the bad informed user
Navigating Security in the Cloud
Diya Jolly, Chief Product Officer, Okta,  12/4/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Navigating the Deluge of Security Data
In this Tech Digest, Dark Reading shares the experiences of some top security practitioners as they navigate volumes of security data. We examine some examples of how enterprises can cull this data to find the clues they need.
Flash Poll
Rethinking Enterprise Data Defense
Rethinking Enterprise Data Defense
Frustrated with recurring intrusions and breaches, cybersecurity professionals are questioning some of the industrys conventional wisdom. Heres a look at what theyre thinking about.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-19551
PUBLISHED: 2019-12-06
In userman 13.0.76.43 through 15.0.20 in Sangoma FreePBX, XSS exists in the User Management screen of the Administrator web site. An attacker with access to the User Control Panel application can submit malicious values in some of the time/date formatting and time-zone fields. These fields are not b...
CVE-2019-19552
PUBLISHED: 2019-12-06
In userman 13.0.76.43 through 15.0.20 in Sangoma FreePBX, XSS exists in the user management screen of the Administrator web site, i.e., the/admin/config.php?display=userman URI. An attacker with sufficient privileges can edit the Display Name of a user and embed malicious XSS code. When another user...
CVE-2019-19620
PUBLISHED: 2019-12-06
In SecureWorks Red Cloak Windows Agent before 2.0.7.9, a local user can bypass the generation of telemetry alerts by removing NT AUTHORITY\SYSTEM permissions from a malicious file.
CVE-2019-19625
PUBLISHED: 2019-12-06
SROS 2 0.8.1 (which provides the tools that generate and distribute keys for Robot Operating System 2 and uses the underlying security plugins of DDS from ROS 2) leaks node information due to a leaky default configuration as indicated in the policy/defaults/dds/governance.xml document.
CVE-2019-19627
PUBLISHED: 2019-12-06
SROS 2 0.8.1 (after CVE-2019-19625 is mitigated) leaks ROS 2 node-related information regardless of the rtps_protection_kind configuration. (SROS2 provides the tools to generate and distribute keys for Robot Operating System 2 and uses the underlying security plugins of DDS from ROS 2.)