Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

7/27/2016
10:30 AM
Dan Cuddeford
Dan Cuddeford
Commentary
Connect Directly
LinkedIn
RSS
E-Mail vvv
50%
50%

The Internet Of Tiny Things: What Lurks Inside

Hackers can now use a tiny $2 embedded chip -- at scale -- to launch thousands of infected 'things' out into the ether to capture data and soften consumers up for an attack.

Imagine this: you’re handed a free phone charger at a tech conference and you accept it, knowing that your phone battery isn’t likely to survive the day. Little do you know that a tiny device is embedded within the charger, capturing data and softening you up for an eventual attack.

Sound like an unlikely threat? Think again.

Between the many stories of hacked refrigerators, automobiles, medical devices, webcams, baby monitors and more, the dangers of the Internet of things (IoT) has been thrust into the spotlight. However, not much consideration has gone into IoT devices being utilized to attack legacy IT devices.

With the IoT economy expected to be worth $1.7 trillion by 2020, according to IDC, the cost and form factor of IoT devices is dropping exponentially while the computing power approaches that of what can be achieved with a “non-thing” device. Believe it or not, with these technology advancements, hackers can now use a tiny $2 IoT chip at scale for malicious purposes - launching thousands of infected-things out into the ether. Because the size of these chips is so small, they can be easily inserted into USB chargers and memory sticks and piggyback off the power supply they are a part of.

Black Hat USA returns to the fabulous Mandalay Bay in Las Vegas, Nevada July 30 through Aug. 4, 2016. Click for information on the conference schedule and to register.

Victims and carriers of these devices might be unaware that such small things can harbor such risks, exposing both individuals and organizations to considerable threat of cyberattack.

An example of this is an IoT chip called the ESP-01 8266, which is a low cost Wi-Fi chip with full TCP/IP stack and an embedded microcontroller. Roughly the size of a quarter, this chip is available for less than two dollars per unit, weighs less than five grams, and comes in over twelve form factors varying in physical size. These same chips are often used for embedded devices such as temperature sensors or controllers placed on lightweight drones. 

The largest form factor is the ESP-12E chip, which can be used to demonstrate how both active and passive WiFi attacks can be conducted using a cheap and self-contained device like a phone charger. Passive attacks listen for unencrypted WiFi communication, which the majority of public hotspots are configured for. Active attacks, on the other hand, may spoof a well-known service set identifier (SSID) and attempt to socially engineer a user to install a bad profile on their mobile device or cryptographically intercept sensitive information such as email traffic.

These passive and active exploits have even been conducted on a much smaller scale with the ESP-01 chip, a device so small it can fit inside a mobile phone charger. This charger can covertly act as the chip’s power source and whenever the victim plugs their charger into a power source, the chip is activated. The chip seeks out open WiFi networks, and if available, calls-home for the next over-the-air (OTA) update. There are many nefarious applications the chip can run including serving malicious profiles to nearby devices. It can also passively monitor neary SSIDs/BSSIDs to approximate the charger’s current location and transmit that back to the hacker. (Click here for more on this project.)

So with all this in mind, what’s on the horizon for the ESP8266 form factor?

The current family of ESPs are small and cheap but underpowered for any complex cryptographic function. However, as technology advances, the chip will continue to evolve. In fact, the new ESP32 adds additional computing power and the ability to use Bluetooth and WiFi simultaneously. This may lead to seeing the ESP chip-set being used for more active attacks and man-in-the-middle spoofing. So the next time you’re at a conference and you’re handed a free charger, you may want to think twice about what might be lurking inside.

Related Content:

 

 

Dan is director of sales engineering at Wandera, the leading global provider of security and management for mobile data. An experienced engineer in network and cloud security, Dan has worked with start-ups through to global enterprises. Organizations use Wandera to protect ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
lorraine89
50%
50%
lorraine89,
User Rank: Ninja
9/16/2016 | 10:16:13 AM
Staying safe online
The internet is not a safe haven anymmore. The threat of being hacked lingers around us on daily basis. I myself have been the victim of counterfeiting last year via email scam. Since then I have been using vpn server, purevpn, to secure and hide my IP from being the recipient of unwanted scam emails and most importantly to shield my home network from being traced or hacked, particularly when I am carrying out banking transactions. 
Edge-DRsplash-10-edge-articles
7 Old IT Things Every New InfoSec Pro Should Know
Joan Goodchild, Staff Editor,  4/20/2021
News
Cloud-Native Businesses Struggle With Security
Robert Lemos, Contributing Writer,  5/6/2021
Commentary
Defending Against Web Scraping Attacks
Rob Simon, Principal Security Consultant at TrustedSec,  5/7/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
2021 Top Enterprise IT Trends
We've identified the key trends that are poised to impact the IT landscape in 2021. Find out why they're important and how they will affect you today!
Flash Poll
How Enterprises are Developing Secure Applications
How Enterprises are Developing Secure Applications
Recent breaches of third-party apps are driving many organizations to think harder about the security of their off-the-shelf software as they continue to move left in secure software development practices.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-36289
PUBLISHED: 2021-05-12
Affected versions of Atlassian Jira Server and Data Center allow an unauthenticated user to enumerate users via an Information Disclosure vulnerability in the QueryComponentRendererValue!Default.jspa endpoint. The affected versions are before version 8.5.13, from version 8.6.0 before 8.13.5, and fro...
CVE-2021-32606
PUBLISHED: 2021-05-11
In the Linux kernel 5.11 through 5.12.2, isotp_setsockopt in net/can/isotp.c allows privilege escalation to root by leveraging a use-after-free. (This does not affect earlier versions that lack CAN ISOTP SF_BROADCAST support.)
CVE-2021-3504
PUBLISHED: 2021-05-11
A flaw was found in the hivex library in versions before 1.3.20. It is caused due to a lack of bounds check within the hivex_open function. An attacker could input a specially crafted Windows Registry (hive) file which would cause hivex to read memory beyond its normal bounds or cause the program to...
CVE-2021-20309
PUBLISHED: 2021-05-11
A flaw was found in ImageMagick in versions before 7.0.11 and before 6.9.12, where a division by zero in WaveImage() of MagickCore/visual-effects.c may trigger undefined behavior via a crafted image file submitted to an application using ImageMagick. The highest threat from this vulnerability is to ...
CVE-2021-20310
PUBLISHED: 2021-05-11
A flaw was found in ImageMagick in versions before 7.0.11, where a division by zero ConvertXYZToJzazbz() of MagickCore/colorspace.c may trigger undefined behavior via a crafted image file that is submitted by an attacker and processed by an application using ImageMagick. The highest threat from this...