Vulnerabilities / Threats

1/24/2018
02:00 PM
Liz Maida
Liz Maida
Commentary
Connect Directly
LinkedIn
RSS
E-Mail vvv
100%
0%

Security Automation: Time to Start Thinking More Strategically

To benefit from automation, we need to review incident response processes to find the areas where security analysts can engage in more critical thought and problem-solving.

Automation is being hailed as a way to take some of the heavy lifting away from overworked security operations teams. Security vendors are integrating automation into their point solutions to automate tasks such as security policy orchestration, change and configuration management, incident response playbooks, and other labor-intensive tasks.

This is a good start toward solving some of the challenges of managing the modern security stack. But we need to think more strategically about automation if we're truly going to solve cybersecurity workforce challenges and gain any kind of edge over hackers.

Most automation takes place at the front end of the cycle: the detection and prioritization of security alerts. A combination of threat intelligence feeds, SIEMs, and incident response platforms generate event and incident data and perform some level of automation (correlation, orchestration, change management, etc.). This automation is helpful, but I hear, on average,  from security teams that they are only spending about 30% of their time on the front end of the cycle. It's what happens after a threat is detected, prioritized, and sent to the operations team that the real work begins.

In most organizations I've worked with, I see an estimated 40% of a team's resources being poured into manual investigation of incidents. This is often the most painstaking, lengthy part of the security life cycle. Analysts tasked with investigating and remediating security alerts often see more than 1,000 alerts per week from the more than 40 vendors deployed throughout their complex environment. The introduction of threat intelligence compounds this problem, as a single feed can generate more than 3.5 million indicators per month. Given the volume of data that must be evaluated and investigated, the average enterprise is ultimately throwing away more than 90% of its security data.

The remaining 30% of their time is focused on mitigation and reporting of the incident. These last two steps are the most important for learning from an incident and being better prepared for a future incident — yet most teams simply do not have the time or infrastructure to properly follow through on them. Once the lengthy investigation process is concluded, the results of that investigation are retained as independent, isolated reports. The technical details of the security incident are not stored or structured in a way that allows for automated correlations and are often missing the organizational context. Even when enterprises are creating their own indicators, they are manually maintaining lists of malicious IPs or domains in spreadsheets or text files rather than feeding those insights back into the system to be applied to future threats.

It's not enough to simply introduce automation. In order to extract the most benefit from automation, we need to holistically review incident response processes to find the areas where security analysts can engage in more critical thought and problem-solving.

Part of that means finding ways to automate the actual intelligence and do more of the analytical work in order to allow analysts to make quicker, more informed decisions. Beyond automating process elements, look for ways to automate correlation rules, historical analysis and coordinated communication between security devices. Intelligence automation will bring incident response to the next level. 

Related Content:

Liz Maida is instrumental in building and leading the company and its technology, which is founded on core elements of her graduate school research examining the application of graph theory to network interconnection. She was formerly a senior director at Akamai Technologies, ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
aumickmanuela
50%
50%
aumickmanuela,
User Rank: Apprentice
2/7/2018 | 10:01:42 AM
Thanks)
yeah, that is true) Great article, thanks a  lot for sharing)
New Mexico Man Sentenced on DDoS, Gun Charges
Dark Reading Staff 5/18/2018
Google to Delete 'Secure' Label from HTTPS Sites
Kelly Sheridan, Staff Editor, Dark Reading,  5/21/2018
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: "The one you have not seen, won't be remembered".
Current Issue
Flash Poll
[Strategic Security Report] Navigating the Threat Intelligence Maze
[Strategic Security Report] Navigating the Threat Intelligence Maze
Most enterprises are using threat intel services, but many are still figuring out how to use the data they're collecting. In this Dark Reading survey we give you a look at what they're doing today - and where they hope to go.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2017-9317
PUBLISHED: 2018-05-23
Privilege escalation vulnerability found in some Dahua IP devices. Attacker in possession of low privilege account can gain access to credential information of high privilege account and further obtain device information or attack the device.
CVE-2018-1193
PUBLISHED: 2018-05-23
Cloud Foundry routing-release, versions prior to 0.175.0, lacks sanitization for user-provided X-Forwarded-Proto headers. A remote user can set the X-Forwarded-Proto header in a request to potentially bypass an application requirement to only respond over secure connections.
CVE-2018-1122
PUBLISHED: 2018-05-23
procps-ng before version 3.3.15 is vulnerable to a local privilege escalation in top. If a user runs top with HOME unset in an attacker-controlled directory, the attacker could achieve privilege escalation by exploiting one of several vulnerabilities in the config_file() function.
CVE-2018-1123
PUBLISHED: 2018-05-23
procps-ng before version 3.3.15 is vulnerable to a denial of service in ps via mmap buffer overflow. Inbuilt protection in ps maps a guard page at the end of the overflowed buffer, ensuring that the impact of this flaw is limited to a crash (temporary denial of service).
CVE-2018-1125
PUBLISHED: 2018-05-23
procps-ng before version 3.3.15 is vulnerable to a stack buffer overflow in pgrep. This vulnerability is mitigated by FORTIFY, as it involves strncat() to a stack-allocated string. When pgrep is compiled with FORTIFY (as on Red Hat Enterprise Linux and Fedora), the impact is limited to a crash.