Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

6/22/2017
04:35 PM
Connect Directly
Google+
Twitter
RSS
E-Mail
50%
50%

Nuclear Plants, Hospitals at Risk of Hacked Radiation Monitoring Devices

Security researcher discovers major security flaws that can't be patched or fixed.

Design flaws in devices used to monitor radiation levels in nuclear plants, hospitals, seaports, and at border controls, could be exploited by an attacker to inject phony radiation readings, a security researcher has found.

Ruben Santamarta, principal security consultant at IOActive, reverse-engineered the firmware of two different brands of radiation monitoring devices as well as analyzed their hardware and a proprietary radio frequency (RF) protocol used for communicating with those devices, and discovered major design flaws that leave them open for hacking.

The vulnerabilities are not your standard buffer overflows or other known classes of bugs, he says. "This research covers several design-level vulnerabilities," says Santamarta. "The vulnerabilities are related to the design of these devices and their radio protocols."

And the catch: there's no fix or patch that can remedy them, he says. "There's no solution for these issues," Santamarta says. "You can't patch them because it's the way they are designed."

Santamarta won't name the affected vendors or provide many of the technical details of his findings until his presentation on his research next month at Black Hat USA, Go Nuclear: Breaking Radiation Monitoring Devices. He says many other brands of radiation monitoring devices are also vulnerable to attack because they all use the same RF protocols for communications.

The RF protocol used for communicating to and from the devices both lack encryption as well as use weak encryption algorithms in cases where they do employ crypto, he says. "There were weak encryption algorithms for radio communications and for updates to" the device firmware, he says.

"In this [Black Hat] talk, I'm going to try to explain how to reverse-engineer an entire radio protocol, from physical to application layer," he says.

An attacker could wage a cyberattack on these devices as far away as 20 kilometers, he says. "You don't need to be near the facility to attack it," Santamarta says. And there are plenty of tools available for an attacker to jump onto the RF network. "The problem with radio is it's difficult to mitigate" an attack via it, he says.

The weak RF protocols and firmware could allow an attacker to inject fake radiation readings, so that if there were a radiation accident or leak, it couldn't be detected, for example. Or the reverse: it could send phony readings of high radiation levels when none were actually present, he says.

"Potentially false readers can trick operators into performing actions" that aren't correct if they incorrectly are alerted that radiation exposure has occurred, for example, he says. "An attacker could inject false readings into a nuclear power plant's radiation monitoring device simulating a massive radiation leak … How is the operator going to react?

"These are the worst-case" scenarios of attacks exploiting the design flaws in the devices and their protocols, he says.

So what can organizations using radiation monitoring devices do to prevent a cyberattack on the equipment?

"The best thing is to know that these attacks are feasible. The problem … is there are no solutions for the vulnerabilities. The only way to protect is to raise awareness of these attacks … and identify when they may be happening," says Santamarta, who will detail at Black Hat some methods of mitigating the potential impact of a hacked radiation monitoring device.

"It's complicated," he says.

The inspiration for Santamarta's research, he notes, were two famous nuclear facility incidents: the 1979 Three Mile Island nuclear plant core meltdown and the 2007 theft of fuel pellets of uranium oxide from a nuclear fuel facility in Spain. Three Mile Island's mechanical failure led to inconsistent radiation level readings to the plant's operators that ultimately exacerbated the accident, according to Santamarta.

"They were receiving false information," he says. "So I wondered, what happens if someone tries to send false information that's then consumed by operators? What could happen?"

Black Hat USA returns to the fabulous Mandalay Bay in Las Vegas, Nevada, July 22-27, 2017. Click for information on the conference schedule and to register.

Related Content:

Kelly Jackson Higgins is the Executive Editor of Dark Reading. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Oldest First  |  Newest First  |  Threaded View
DevSecOps: The Answer to the Cloud Security Skills Gap
Lamont Orange, Chief Information Security Officer at Netskope,  11/15/2019
Attackers' Costs Increasing as Businesses Focus on Security
Robert Lemos, Contributing Writer,  11/15/2019
I 'Hacked' My Accounts Using My Mobile Number: Here's What I Learned
Nicole Sette, Director in the Cyber Risk practice of Kroll, a division of Duff & Phelps,  11/19/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Navigating the Deluge of Security Data
In this Tech Digest, Dark Reading shares the experiences of some top security practitioners as they navigate volumes of security data. We examine some examples of how enterprises can cull this data to find the clues they need.
Flash Poll
Rethinking Enterprise Data Defense
Rethinking Enterprise Data Defense
Frustrated with recurring intrusions and breaches, cybersecurity professionals are questioning some of the industrys conventional wisdom. Heres a look at what theyre thinking about.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-5087
PUBLISHED: 2019-11-21
An exploitable integer overflow vulnerability exists in the flattenIncrementally function in the xcf2png and xcf2pnm binaries of xcftools 1.0.7. An integer overflow can occur while calculating the row's allocation size, that could be exploited to corrupt memory and eventually execute arbitrary code....
CVE-2019-5509
PUBLISHED: 2019-11-21
ONTAP Select Deploy administration utility versions 2.11.2 through 2.12.2 are susceptible to a code injection vulnerability which when successfully exploited could allow an unauthenticated remote attacker to enable and use a privileged user account.
CVE-2019-6693
PUBLISHED: 2019-11-21
Use of a hard-coded cryptographic key to cipher sensitive data in FortiOS configuration backup file may allow an attacker with access to the backup file to decipher the sensitive data, via knowledge of the hard-coded key. The aforementioned sensitive data includes users' passwords (except the admini...
CVE-2019-17272
PUBLISHED: 2019-11-21
All versions of ONTAP Select Deploy administration utility are susceptible to a vulnerability which when successfully exploited could allow an administrative user to escalate their privileges.
CVE-2019-17650
PUBLISHED: 2019-11-21
An Improper Neutralization of Special Elements used in a Command vulnerability in one of FortiClient for Mac OS root processes, may allow a local user of the system on which FortiClient is running to execute unauthorized code as root by bypassing a security check.