Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

6/22/2017
04:35 PM
Connect Directly
Google+
Twitter
RSS
E-Mail
50%
50%

Nuclear Plants, Hospitals at Risk of Hacked Radiation Monitoring Devices

Security researcher discovers major security flaws that can't be patched or fixed.

Design flaws in devices used to monitor radiation levels in nuclear plants, hospitals, seaports, and at border controls, could be exploited by an attacker to inject phony radiation readings, a security researcher has found.

Ruben Santamarta, principal security consultant at IOActive, reverse-engineered the firmware of two different brands of radiation monitoring devices as well as analyzed their hardware and a proprietary radio frequency (RF) protocol used for communicating with those devices, and discovered major design flaws that leave them open for hacking.

The vulnerabilities are not your standard buffer overflows or other known classes of bugs, he says. "This research covers several design-level vulnerabilities," says Santamarta. "The vulnerabilities are related to the design of these devices and their radio protocols."

And the catch: there's no fix or patch that can remedy them, he says. "There's no solution for these issues," Santamarta says. "You can't patch them because it's the way they are designed."

Santamarta won't name the affected vendors or provide many of the technical details of his findings until his presentation on his research next month at Black Hat USA, Go Nuclear: Breaking Radiation Monitoring Devices. He says many other brands of radiation monitoring devices are also vulnerable to attack because they all use the same RF protocols for communications.

The RF protocol used for communicating to and from the devices both lack encryption as well as use weak encryption algorithms in cases where they do employ crypto, he says. "There were weak encryption algorithms for radio communications and for updates to" the device firmware, he says.

"In this [Black Hat] talk, I'm going to try to explain how to reverse-engineer an entire radio protocol, from physical to application layer," he says.

An attacker could wage a cyberattack on these devices as far away as 20 kilometers, he says. "You don't need to be near the facility to attack it," Santamarta says. And there are plenty of tools available for an attacker to jump onto the RF network. "The problem with radio is it's difficult to mitigate" an attack via it, he says.

The weak RF protocols and firmware could allow an attacker to inject fake radiation readings, so that if there were a radiation accident or leak, it couldn't be detected, for example. Or the reverse: it could send phony readings of high radiation levels when none were actually present, he says.

"Potentially false readers can trick operators into performing actions" that aren't correct if they incorrectly are alerted that radiation exposure has occurred, for example, he says. "An attacker could inject false readings into a nuclear power plant's radiation monitoring device simulating a massive radiation leak … How is the operator going to react?

"These are the worst-case" scenarios of attacks exploiting the design flaws in the devices and their protocols, he says.

So what can organizations using radiation monitoring devices do to prevent a cyberattack on the equipment?

"The best thing is to know that these attacks are feasible. The problem … is there are no solutions for the vulnerabilities. The only way to protect is to raise awareness of these attacks … and identify when they may be happening," says Santamarta, who will detail at Black Hat some methods of mitigating the potential impact of a hacked radiation monitoring device.

"It's complicated," he says.

The inspiration for Santamarta's research, he notes, were two famous nuclear facility incidents: the 1979 Three Mile Island nuclear plant core meltdown and the 2007 theft of fuel pellets of uranium oxide from a nuclear fuel facility in Spain. Three Mile Island's mechanical failure led to inconsistent radiation level readings to the plant's operators that ultimately exacerbated the accident, according to Santamarta.

"They were receiving false information," he says. "So I wondered, what happens if someone tries to send false information that's then consumed by operators? What could happen?"

Black Hat USA returns to the fabulous Mandalay Bay in Las Vegas, Nevada, July 22-27, 2017. Click for information on the conference schedule and to register.

Related Content:

Kelly Jackson Higgins is Executive Editor at DarkReading.com. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
10 Ways to Keep a Rogue RasPi From Wrecking Your Network
Curtis Franklin Jr., Senior Editor at Dark Reading,  7/10/2019
The Security of Cloud Applications
Hillel Solow, CTO and Co-founder, Protego,  7/11/2019
Where Businesses Waste Endpoint Security Budgets
Kelly Sheridan, Staff Editor, Dark Reading,  7/15/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Building and Managing an IT Security Operations Program
As cyber threats grow, many organizations are building security operations centers (SOCs) to improve their defenses. In this Tech Digest you will learn tips on how to get the most out of a SOC in your organization - and what to do if you can't afford to build one.
Flash Poll
The State of IT Operations and Cybersecurity Operations
The State of IT Operations and Cybersecurity Operations
Your enterprise's cyber risk may depend upon the relationship between the IT team and the security team. Heres some insight on what's working and what isn't in the data center.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-10100
PUBLISHED: 2019-07-16
NASA CFITSIO prior to 3.43 is affected by: Buffer Overflow. The impact is: arbitrary code execution. The component is: over 40 source code files were changed. The attack vector is: remote unauthenticated attacker. The fixed version is: 3.43.
CVE-2019-10100
PUBLISHED: 2019-07-16
BigTree-CMS commit b2eff67e45b90ca26a62e971e8f0d5d0d70f23e6 and earlier is affected by: Improper Neutralization of Script-Related HTML Tags in a Web Page. The impact is: Any Javascript code can be executed. The component is: users management page. The attack vector is: Insert payload into users' pro...
CVE-2019-10100
PUBLISHED: 2019-07-16
PluckCMS 4.7.4 and earlier is affected by: CWE-434 Unrestricted Upload of File with Dangerous Type. The impact is: get webshell. The component is: data/inc/images.php line36. The attack vector is: modify the MIME TYPE on HTTP request to upload a php file. The fixed version is: after commit 09f0ab871...
CVE-2019-13612
PUBLISHED: 2019-07-16
MDaemon Email Server 19 skips SpamAssassin checks by default for e-mail messages larger than 2 MB (and limits checks to 10 MB even with special configuration), which is arguably inconsistent with currently popular message sizes. This might interfere with risk management for malicious e-mail, if a cu...
CVE-2019-10100
PUBLISHED: 2019-07-16
Zammad GmbH Zammad 2.3.0 and earlier is affected by: Cross Site Scripting (XSS) - CWE-80. The impact is: Execute java script code on users browser. The component is: web app. The attack vector is: the victim must open a ticket. The fixed version is: 2.3.1, 2.2.2 and 2.1.3.