Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

7/26/2016
09:31 AM
Connect Directly
Twitter
RSS
E-Mail
50%
50%

'MouseJack' Researchers Uncover Major Wireless Keyboard Vulnerability

KeySniffer attack shows two-thirds of low-cost wireless keyboards prone to keystroke capture and malicious keystroke injection.

The same researchers who earlier this year uncovered glaring vulnerabilities in many wireless mice today announced a new major flaw in the majority of the market's low-cost wireless keyboards that puts users at risk of having attackers remotely sniff all of their keystrokes and even inject their own malicious keystroke commands from distances of up to 250 feet away.

Dubbed KeySniffer by the Bastille Research Team who found it, the vulnerability puts any password, credential, security secret, or intellectual property byproduct that is typed, at risk of eavesdropping and capture by attackers. The affected manufacturers' products do not encrypt data transmitting between their keyboards and the USB dongle that wirelessly connects it to a computer.

According to Marc Newlin, the member of Bastille Research Team who made the discovery, eight of the 12 manufacturers tested for KeySniffer were vulnerable, including Hewlett-Packard, Toshiba, Kensington, Insignia, Radio Shack, Anker, General Electric, and EagleTec.

Whereas previous wireless keyboard attack discoveries such as 2010's KeyKeriki and 2015's KeySweeper exploited weaknesses in Microsoft's encryption for its keyboards, this one is different because it shows that the affected manufacturers didn't encrypt transmissions at all. Even worse, attackers can sniff out KeySniffer-prone victims without them actively typing at their workstation.

"Previously demonstrated vulnerabilities affecting wireless keyboards required the attacker to first observe radio packets transmitted when the victim typed on their keyboard," Newlin says. "The keyboards vulnerable to KeySniffer use USB dongles which continuously transmit radio packets at regular intervals, enabling an attacker to quickly survey an environment such as a room, building, or public space, for vulnerable devices regardless of the victim’s presence."

As a result, it becomes all the easier for attackers to quickly find vulnerable devices and set up shop to capture information once the user does start to type. What's more, the flaw also makes it possible to inject malicious keystrokes into the victim's machine, opening up a whole other world of attacks for the bad guys, including easier installation of malware, exfiltration of data, or execution of malicious commands, without any user interaction required.

The KeySniffer attack is made possible by a common vulnerability in undocumented USB transceivers from MOSART Semiconductor, Signia Technologies, and one unknown manufacturer, all of which Bastille reverse-engineered in order to properly examine data it found through exploratory attacks. The packet capture itself was conducted using an amplified USB dongle called the Crazyradio PA[6], which is more commonly used on open-source drones and for which Bastille developed custom firmware and software to communicate with the keyboards vulnerable to KeySniffer.

Black Hat USA returns to the fabulous Mandalay Bay in Las Vegas, Nevada July 30 through Aug. 4, 2016. Click for information on the conference schedule and to register.

According to researchers, this vulnerability fortunately does not affect Bluetooth and higher-end wireless keyboards, including those from Logitech, Dell, and Lenovo, none of which were impacted. However, the bad news is that keyboards that are susceptible to KeySniffer cannot be upgraded and the risk can only be mitigated by replacing them.

This vulnerability discovery by Bastille is the second peripheral attack found by the firm in five months. The first was MouseJack, a similar flaw in non-Bluetooth mouse devices that also had them transmitting information in the clear.

Related Content:

 

 

Ericka Chickowski specializes in coverage of information technology and business innovation. She has focused on information security for the better part of a decade and regularly writes about the security industry as a contributor to Dark Reading.  View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Threaded  |  Newest First  |  Oldest First
Mobile Banking Malware Up 50% in First Half of 2019
Kelly Sheridan, Staff Editor, Dark Reading,  1/17/2020
Active Directory Needs an Update: Here's Why
Raz Rafaeli, CEO and Co-Founder at Secret Double Octopus,  1/16/2020
New Attack Campaigns Suggest Emotet Threat Is Far From Over
Jai Vijayan, Contributing Writer,  1/16/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
The Year in Security: 2019
This Tech Digest provides a wrap up and overview of the year's top cybersecurity news stories. It was a year of new twists on old threats, with fears of another WannaCry-type worm and of a possible botnet army of Wi-Fi routers. But 2019 also underscored the risk of firmware and trusted security tools harboring dangerous holes that cybercriminals and nation-state hackers could readily abuse. Read more.
Flash Poll
How Enterprises are Attacking the Cybersecurity Problem
How Enterprises are Attacking the Cybersecurity Problem
Organizations have invested in a sweeping array of security technologies to address challenges associated with the growing number of cybersecurity attacks. However, the complexity involved in managing these technologies is emerging as a major problem. Read this report to find out what your peers biggest security challenges are and the technologies they are using to address them.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-20399
PUBLISHED: 2020-01-23
A timing vulnerability in the Scalar::check_overflow function in Parity libsecp256k1-rs before 0.3.1 potentially allows an attacker to leak information via a side-channel attack.
CVE-2020-7915
PUBLISHED: 2020-01-22
An issue was discovered on Eaton 5P 850 devices. The Ubicacion SAI field allows XSS attacks by an administrator.
CVE-2019-20391
PUBLISHED: 2020-01-22
An invalid memory access flaw is present in libyang before v1.0-r3 in the function resolve_feature_value() when an if-feature statement is used inside a bit. Applications that use libyang to parse untrusted input yang files may crash.
CVE-2019-20392
PUBLISHED: 2020-01-22
An invalid memory access flaw is present in libyang before v1.0-r1 in the function resolve_feature_value() when an if-feature statement is used inside a list key node, and the feature used is not defined. Applications that use libyang to parse untrusted input yang files may crash.
CVE-2019-20393
PUBLISHED: 2020-01-22
A double-free is present in libyang before v1.0-r1 in the function yyparse() when an empty description is used. Applications that use libyang to parse untrusted input yang files may be vulnerable to this flaw, which would cause a crash or potentially code execution.