Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats

12/1/2017
10:30 AM
Connect Directly
Twitter
LinkedIn
RSS
E-Mail vvv
50%
50%

Deception: Why It's Not Just Another Honeypot

The technology has made huge strides in evolving from limited, static capabilities to adaptive, machine learning deception.

Deception — isn't that a honeypot? That's a frequently asked question when the topic of deception technology arises. This two-part post will trace the origins of honeypots, the rationale behind them, and what factors ultimately hampered their wide-scale adoption. The second post focuses on what makes up modern-day deception technology, how the application of deception technology has evolved, and which features and functions are driving its adoption and global deployment.

Almost 15 years ago, Honeyd was introduced as the first commercially available honeypot and offered simple network emulation tools designed to detect attackers. The concept was intriguing but never gained much traction outside of organizations with highly skilled staff and for research. The idea was to place a honeypot outside the network, wait for inbound network connections, and see if an attacker would engage with the decoy.

Today's attackers are more sophisticated, well-funded, and increasingly more aggressive in their attacks. Human error will continually result in mistakes for attackers to exploit. With breaches getting more severe, the population getting less patient, and the emergence of regulations and fines, in-network threat detection has become critical for every organization's security infrastructure. So much so that FBR Capital Markets forecasts that the deception technology market as a detection security control will grow to $3 billion by 2019, three times its size in 2016.

The systemic problem is that organizations are overly dependent on their prevention infrastructure, leading to a detection gap once that attacker is inside the network. For the connected world we live in, it's widely believed in the industry that it no longer works to focus only on keeping attackers out. The structure is also flawed when applied to insiders, contractors, and suppliers who have forms of privileged access. Alternatively, solutions that rely on monitoring, pattern matching, and behavioral analysis are being used as a detection control but can be prone to false positives, making them complex and resource intensive.

The concept of setting traps for attackers is re-emerging given its efficiency and the advancements in deception technology that have removed scalability, deployment, and operational functionality issues that previously had hampered the wide-scale adoption of honeypots. Consequently, companies across the financial, healthcare, technology, retail, energy, and government sectors are starting to turn to deception technology as part of their defense strategies.

Deception is still a fairly new technology, so it is not surprising that seasoned security professionals will ask, "Isn't deception just a honeypot or honeynet?" In fairness, if you consider that they are both built on trapping technology, they are similar. Both technologies were designed to confuse, mislead, and delay attackers by incorporating ambiguity and misdirecting their operations. But that is where the similarity ends.  

Deception's Evolution
Gene Spafford, a leading security industry expert and professor of computer science at Purdue University, originally introduced the concept of cyber deception in 1989 when he employed "active defenses" to identify attacks that were underway, designed to slow down attackers, learn their techniques, and feed them fake data.

The next generation of advancements included low-interaction honeypots, such as Honeyd, built on limited service emulations. The ability to detect mass network scanning or automated attacks (malware, scripts, bots, scanners), track worms, and low purchase costs were the principal appeal of low-interaction honeypots. However, honeypot adoption was limited, given a number of limitations and associated management complexity, such as the following:

  • Honeypots were designed for detecting threats that are outside the network and were predominately focused on general research vs. responding to the more critical need for in-network detection.  
  • Human attackers can easily figure out if a system is emulated, fingerprint it, and avoid detection from honeypots
  • These systems are not high interaction, limiting the attack information that could be collected and any value in improving incident response.
  • Attackers could abuse a compromised system and use it as a pivot point to continue their attack.
  • Honeypots are not designed for scalability, are operationally intensive, and require skilled security professionals to operate

Deception technology has made monumental strides in evolving from limited, static capabilities to adaptive, machine learning deception that is designed for easy operationalization and scalability. Today's deception platforms are built on the pillars of authenticity/attractiveness, scalability, ease of operations, and integrations that accelerate incident response. Based on our own internal testing and from others in the emerging deception market, deception is now so authentic that highly skilled red team penetration testers continually fall prey to deception decoys and planted credentials, further validating the technology's ability to successfully detect and confuse highly skilled cyberattackers into revealing themselves. 

Related Content:

Carolyn Crandall is a technology executive with over 25 years of experience in building emerging technology markets in security, networking, and storage industries. She has a demonstrated track record of successfully taking companies from pre-IPO through to ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Where Businesses Waste Endpoint Security Budgets
Kelly Sheridan, Staff Editor, Dark Reading,  7/15/2019
US Mayors Commit to Just Saying No to Ransomware
Robert Lemos, Contributing Writer,  7/16/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Building and Managing an IT Security Operations Program
As cyber threats grow, many organizations are building security operations centers (SOCs) to improve their defenses. In this Tech Digest you will learn tips on how to get the most out of a SOC in your organization - and what to do if you can't afford to build one.
Flash Poll
The State of IT Operations and Cybersecurity Operations
The State of IT Operations and Cybersecurity Operations
Your enterprise's cyber risk may depend upon the relationship between the IT team and the security team. Heres some insight on what's working and what isn't in the data center.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-17210
PUBLISHED: 2019-07-20
An issue was discovered in PrinterOn Central Print Services (CPS) through 4.1.4. The core components that create and launch a print job do not perform complete verification of the session cookie that is supplied to them. As a result, an attacker with guest/pseudo-guest level permissions can bypass t...
CVE-2019-12934
PUBLISHED: 2019-07-20
An issue was discovered in the wp-code-highlightjs plugin through 0.6.2 for WordPress. wp-admin/options-general.php?page=wp-code-highlight-js allows CSRF, as demonstrated by an XSS payload in the hljs_additional_css parameter.
CVE-2019-9229
PUBLISHED: 2019-07-20
An issue was discovered on AudioCodes Mediant 500L-MSBR, 500-MBSR, M800B-MSBR and 800C-MSBR devices with firmware versions F7.20A to F7.20A.251. An internal interface exposed to the link-local address 169.254.254.253 allows attackers in the local network to access multiple quagga VTYs. Attackers can...
CVE-2019-12815
PUBLISHED: 2019-07-19
An arbitrary file copy vulnerability in mod_copy in ProFTPD up to 1.3.5b allows for remote code execution and information disclosure without authentication, a related issue to CVE-2015-3306.
CVE-2019-13569
PUBLISHED: 2019-07-19
A SQL injection vulnerability exists in the Icegram Email Subscribers & Newsletters plugin through 4.1.7 for WordPress. Successful exploitation of this vulnerability would allow a remote attacker to execute arbitrary SQL commands on the affected system.