Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Threat Intelligence

New Research Seeks to Shorten Attack Dwell Time

It can take months for an organization to know they've been hacked. A new DARPA-funded project seeks to reduce that time to hours.

One of the major issues in IT security is not that attacks and exploits are successful. It's that they're successful and then go unnoticed for so long. A new DARPA-funded research project at Georgia Tech is applying a variety of techniques to dramatically reduce the "dwell time" of an attack from the current average of more than 6 months to as little as 24 hours.

The DARPA grant gives a team of researchers $12.8 million over four years for the "Gnomon" project. Gnomon's approach is based on the admission that breaches are inevitable. What the project aims to do is examine the behavior of the devices and systems attached to the network to tell when something begins to exhibit suspicious behavior and allow professionals or automated systems to immediately begin remediation.

Gnomon's operation doesn't rely on identifying malicious files at all. "We're not looking at the malware, because they might not use malware, they might use something like Powershell," says co-principle investigator Manos Antonakakis, an assistant professor in Georgia Tech’s School of Electrical and Computer Engineering. Instead, the behavior-based tactics seek to mitigate one of the attackers' primary advantages over defenders.

"One study we did last year showed that threats are live in the wild for many months before we even get a sample," says Antonakakis. The study says, "…the PUP [potentially undesirable program]-related domains are active an average of 192 days before we get to dynamically analyze the corresponding samples."

The sheer number of domains (and therefore malware families) profiting from a delay in analysis is huge. Again, from the research for the study, "…302,953 malware domains were active at least two weeks — in some cases many months — before the corresponding malware samples were analyzed."

Analyzing behavior of large networks in real time requires massive compute power. In Gnomon's case, that power is used in service to "dynamic intelligence." Asked to define dynamic intelligence and differentiate it from machine intelligence or AI, Antonakakis says, "Dynamic intelligence is based on the dynamic modeling concept. You can build models that can characterize both short term and long term behavior." The dynamic model that looks at object behavior over time is critical to the analysis.

Once malicious behavior has been identified, network security professionals must still figure out what to do about it, for example, whether blackhole, honeypot, system rebuild, file remediation, or some other action is warranted. Antonakakis says that his researchers gained insight into the answers when doing work on how best to take down botnets. The goal for Gnomon is straightforward if initially counter-intuitive; make malware more complicated.

"What this project will do in 3 - 4 years is that it increases the load for the adversaries; it makes them work harder," Antonakakis says. "If they do that, they have to engage in more complicated attacks, and that increases the chance that they will make mistakes that will help us identify them earlier."

In addition, complicated malware and malicious activity tends to stand out more vividly than does simple software. Today, Gnomon is working with two unnamed U.S. telecommunications companies to analyze networks and pass along information. "You need to study the domain knowledge you have about the threats multiple times through the day, and do that across the networks you're protecting," Antonakakis says. "Our goal is to be able to detect a change in behavior in under 24 hours."

Related Content:

Curtis Franklin Jr. is Senior Editor at Dark Reading. In this role he focuses on product and technology coverage for the publication. In addition he works on audio and video programming for Dark Reading and contributes to activities at Interop ITX, Black Hat, INsecurity, and ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 7/9/2020
Russian Cyber Gang 'Cosmic Lynx' Focuses on Email Fraud
Kelly Sheridan, Staff Editor, Dark Reading,  7/7/2020
Why Cybersecurity's Silence Matters to Black Lives
Tiffany Ricks, CEO, HacWare,  7/8/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal, a Dark Reading Perspective
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
The Threat from the Internetand What Your Organization Can Do About It
The Threat from the Internetand What Your Organization Can Do About It
This report describes some of the latest attacks and threats emanating from the Internet, as well as advice and tips on how your organization can mitigate those threats before they affect your business. Download it today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-15105
PUBLISHED: 2020-07-10
Django Two-Factor Authentication before 1.12, stores the user's password in clear text in the user session (base64-encoded). The password is stored in the session when the user submits their username and password, and is removed once they complete authentication by entering a two-factor authenticati...
CVE-2020-11061
PUBLISHED: 2020-07-10
In Bareos Director less than or equal to 16.2.10, 17.2.9, 18.2.8, and 19.2.7, a heap overflow allows a malicious client to corrupt the director's memory via oversized digest strings sent during initialization of a verify job. Disabling verify jobs mitigates the problem. This issue is also patched in...
CVE-2020-4042
PUBLISHED: 2020-07-10
Bareos before version 19.2.8 and earlier allows a malicious client to communicate with the director without knowledge of the shared secret if the director allows client initiated connection and connects to the client itself. The malicious client can replay the Bareos director's cram-md5 challenge to...
CVE-2020-11081
PUBLISHED: 2020-07-10
osquery before version 4.4.0 enables a priviledge escalation vulnerability. If a Window system is configured with a PATH that contains a user-writable directory then a local user may write a zlib1.dll DLL, which osquery will attempt to load. Since osquery runs with elevated privileges this enables l...
CVE-2020-6114
PUBLISHED: 2020-07-10
An exploitable SQL injection vulnerability exists in the Admin Reports functionality of Glacies IceHRM v26.6.0.OS (Commit bb274de1751ffb9d09482fd2538f9950a94c510a) . A specially crafted HTTP request can cause SQL injection. An attacker can make an authenticated HTTP request to trigger this vulnerabi...