Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Threat Intelligence

New Research Seeks to Shorten Attack Dwell Time

It can take months for an organization to know they've been hacked. A new DARPA-funded project seeks to reduce that time to hours.

One of the major issues in IT security is not that attacks and exploits are successful. It's that they're successful and then go unnoticed for so long. A new DARPA-funded research project at Georgia Tech is applying a variety of techniques to dramatically reduce the "dwell time" of an attack from the current average of more than 6 months to as little as 24 hours.

The DARPA grant gives a team of researchers $12.8 million over four years for the "Gnomon" project. Gnomon's approach is based on the admission that breaches are inevitable. What the project aims to do is examine the behavior of the devices and systems attached to the network to tell when something begins to exhibit suspicious behavior and allow professionals or automated systems to immediately begin remediation.

Gnomon's operation doesn't rely on identifying malicious files at all. "We're not looking at the malware, because they might not use malware, they might use something like Powershell," says co-principle investigator Manos Antonakakis, an assistant professor in Georgia Tech’s School of Electrical and Computer Engineering. Instead, the behavior-based tactics seek to mitigate one of the attackers' primary advantages over defenders.

"One study we did last year showed that threats are live in the wild for many months before we even get a sample," says Antonakakis. The study says, "…the PUP [potentially undesirable program]-related domains are active an average of 192 days before we get to dynamically analyze the corresponding samples."

The sheer number of domains (and therefore malware families) profiting from a delay in analysis is huge. Again, from the research for the study, "…302,953 malware domains were active at least two weeks — in some cases many months — before the corresponding malware samples were analyzed."

Analyzing behavior of large networks in real time requires massive compute power. In Gnomon's case, that power is used in service to "dynamic intelligence." Asked to define dynamic intelligence and differentiate it from machine intelligence or AI, Antonakakis says, "Dynamic intelligence is based on the dynamic modeling concept. You can build models that can characterize both short term and long term behavior." The dynamic model that looks at object behavior over time is critical to the analysis.

Once malicious behavior has been identified, network security professionals must still figure out what to do about it, for example, whether blackhole, honeypot, system rebuild, file remediation, or some other action is warranted. Antonakakis says that his researchers gained insight into the answers when doing work on how best to take down botnets. The goal for Gnomon is straightforward if initially counter-intuitive; make malware more complicated.

"What this project will do in 3 - 4 years is that it increases the load for the adversaries; it makes them work harder," Antonakakis says. "If they do that, they have to engage in more complicated attacks, and that increases the chance that they will make mistakes that will help us identify them earlier."

In addition, complicated malware and malicious activity tends to stand out more vividly than does simple software. Today, Gnomon is working with two unnamed U.S. telecommunications companies to analyze networks and pass along information. "You need to study the domain knowledge you have about the threats multiple times through the day, and do that across the networks you're protecting," Antonakakis says. "Our goal is to be able to detect a change in behavior in under 24 hours."

Related Content:

Curtis Franklin Jr. is Senior Editor at Dark Reading. In this role he focuses on product and technology coverage for the publication. In addition he works on audio and video programming for Dark Reading and contributes to activities at Interop ITX, Black Hat, INsecurity, and ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
I 'Hacked' My Accounts Using My Mobile Number: Here's What I Learned
Nicole Sette, Director in the Cyber Risk practice of Kroll, a division of Duff & Phelps,  11/19/2019
6 Top Nontechnical Degrees for Cybersecurity
Curtis Franklin Jr., Senior Editor at Dark Reading,  11/21/2019
Anatomy of a BEC Scam
Kelly Jackson Higgins, Executive Editor at Dark Reading,  11/21/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Navigating the Deluge of Security Data
In this Tech Digest, Dark Reading shares the experiences of some top security practitioners as they navigate volumes of security data. We examine some examples of how enterprises can cull this data to find the clues they need.
Flash Poll
Rethinking Enterprise Data Defense
Rethinking Enterprise Data Defense
Frustrated with recurring intrusions and breaches, cybersecurity professionals are questioning some of the industrys conventional wisdom. Heres a look at what theyre thinking about.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-3654
PUBLISHED: 2019-11-22
Authentication Bypass vulnerability in the Microsoft Windows client in McAfee Client Proxy (MCP) prior to 3.0.0 allows local user to bypass scanning of web traffic and gain access to blocked sites for a short period of time via generating an authorization key on the client which should only be gener...
CVE-2014-2214
PUBLISHED: 2019-11-22
Multiple cross-site scripting (XSS) vulnerabilities in POSH (aka Posh portal or Portaneo) 3.0 through 3.2.1 allow remote attackers to inject arbitrary web script or HTML via the (1) error parameter to /includes/plugins/mobile/scripts/login.php or (2) id parameter to portal/openrssarticle.php
CVE-2014-6310
PUBLISHED: 2019-11-22
Buffer overflow in CHICKEN 4.9.0 and 4.9.0.1 may allow remote attackers to execute arbitrary code via the 'select' function.
CVE-2014-6311
PUBLISHED: 2019-11-22
generate_doygen.pl in ace before 6.2.7+dfsg-2 creates predictable file names in the /tmp directory which allows attackers to gain elevated privileges.
CVE-2019-16763
PUBLISHED: 2019-11-22
In Pannellum from 2.5.0 through 2.5.4 URLs were not sanitized for data URIs (or vbscript:), allowing for potential XSS attacks. Such an attack would require a user to click on a hot spot to execute and would require an attacker-provided configuration. The most plausible potential attack would be if ...