Threat Intelligence

6/29/2018
01:20 PM
Connect Directly
Twitter
LinkedIn
Google+
RSS
E-Mail
50%
50%

Natural Language Processing Fights Social Engineers

Instead of trying to detect social engineering attacks based on a subject line or URL, a new tool conducts semantic analysis of text to determine malicious intent.

Social engineering is a common problem with few solutions. Now, two researchers are trying to bring down attackers' success rate with a new tool designed to leverage natural language processing (NLP) to detect questions and commands and determine whether they are malicious.

Ian Harris, professor at the University of California, Irvine, and Marcel Carlsson, principal consultant at Lootcore, decided to combat social engineering attacks after many years of friendship and discussions around how effective but poorly researched they were.

"The reason why social engineering has always been an interest … it's sort of the weakest link in any infosec conflict," Carlsson says. "Humans are nice people. They'll usually help you. You can, of course, exploit that or manipulate them into giving you information."

Aside from the detection of email phishing, little progress has been made in stopping the rapid rise and success of social engineering attacks. And it's getting harder for defenders: Adversaries are increasingly better at learning their targets, sending emails that seem legitimate, and integrating outside technologies to make their campaigns more powerful.

Many companies believe new technology is the answer, Carlsson says, and there's often a disproportionate focus on preventing attacks but not detecting and responding to them. Much of the research on social engineering detection has relied on analysis of metadata related to email as an attack vector, including header information and embedded links.

Carlsson and Harris decided to take a different approach and focus on the natural language text within messages. Instead of trying to detect social engineering attacks based on a subject line or URL, they built a tool to conduct semantic analysis of text to determine malicious intent.

Harris, whose research has also focused on hardware design and testing, was using NLP to design hardware components when he recognized its applicability to social engineering defense. "It occurred to me after a while that the best way to understand social engineering attacks was to understand the sentences," he explains.

By focusing on the text itself, this tactic can be used to detect social engineering attacks on non-email attack vectors, including texting applications and chat platforms. With a speech-to-text tool, it also can be used to scan for attacks conducted over the phone or in person.

How It Works
For a social engineering attack to succeed, the actor has to either ask a question whose answer is private or command a target to perform an illicit operation. The researchers' approach detects questions or commands in an email. It flags questions requesting private data and private commands requesting performance of a secure operation.

Their tool doesn't need to know the answer to the question in order to classify it as private, Harris explains. It evaluates statements by using the main verb and object of that verb to summarize their meaning. For example, the command "Send money" would be summed up in the verb-object pair "send, money."

Verb-object pairs are compared with a blacklist of verb-object pairs known to describe forbidden actions. Harris and Carlsson scoured randomly selected phishing emails to identify private questions and commands, taking into consideration synonyms of each word so attacks were not incorrectly classified.

"Part of the difficulty of publishing this type of work is getting example attacks," says Harris, explaining why the pair chose to use phishing emails to inform the blacklist. They have tested their approach with more than 187,000 phishing and non-phishing emails.

Going forward, the team plans to bring their desktop tool to both email and chat clients to scan for social engineering attacks. They also hope to expand their technique to improve on detection for highly individualized attacks, Carlsson adds.

"Phishing emails are generally scattershot – you've gotten these, they're generic for everybody," he explains. "The really personalized and painful attacks are the ones where someone is talking on the phone and they now something about you, so they adjust according to the conversation."

The duo will present their approach to detecting social engineering attacks, and release the tool so attendees can test it, at Black Hat 2018 in a panel entitled "Catch me, Yes we can! Pwning Social Engineers Using Natural Language Processing Techniques in Real-Time."

Related Content:

 

 

 
Black Hat USA returns to Las Vegas with hands-on technical Trainings, cutting-edge Briefings, Arsenal open-source tool demonstrations, top-tier security solutions and service providers in the Business Hall. Click for information on the conference and to register.

Kelly Sheridan is the Staff Editor at Dark Reading, where she focuses on cybersecurity news and analysis. She is a business technology journalist who previously reported for InformationWeek, where she covered Microsoft, and Insurance & Technology, where she covered financial ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
12 Free, Ready-to-Use Security Tools
Steve Zurier, Freelance Writer,  10/12/2018
Most IT Security Pros Want to Change Jobs
Dark Reading Staff 10/12/2018
6 Security Trends for 2018/2019
Curtis Franklin Jr., Senior Editor at Dark Reading,  10/15/2018
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: This comment is waiting for review by our moderators.
Current Issue
Flash Poll
The Risk Management Struggle
The Risk Management Struggle
The majority of organizations are struggling to implement a risk-based approach to security even though risk reduction has become the primary metric for measuring the effectiveness of enterprise security strategies. Read the report and get more details today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-10839
PUBLISHED: 2018-10-16
Qemu emulator <= 3.0.0 built with the NE2000 NIC emulation support is vulnerable to an integer overflow, which could lead to buffer overflow issue. It could occur when receiving packets over the network. A user inside guest could use this flaw to crash the Qemu process resulting in DoS.
CVE-2018-13399
PUBLISHED: 2018-10-16
The Microsoft Windows Installer for Atlassian Fisheye and Crucible before version 4.6.1 allows local attackers to escalate privileges because of weak permissions on the installation directory.
CVE-2018-18381
PUBLISHED: 2018-10-16
Z-BlogPHP 1.5.2.1935 (Zero) has a stored XSS Vulnerability in zb_system/function/c_system_admin.php via the Content-Type header during the uploading of image attachments.
CVE-2018-18382
PUBLISHED: 2018-10-16
Advanced HRM 1.6 allows Remote Code Execution via PHP code in a .php file to the user/update-user-avatar URI, which can be accessed through an "Update Profile" "Change Picture" (aka user/edit-profile) action.
CVE-2018-18374
PUBLISHED: 2018-10-16
XSS exists in the MetInfo 6.1.2 admin/index.php page via the anyid parameter.