Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Threat Intelligence

3/14/2019
02:30 PM
Rosaria Silipo
Rosaria Silipo
Commentary
Connect Directly
Twitter
LinkedIn
RSS
E-Mail vvv
50%
50%

Anomaly Detection Techniques: Defining Normal

The challenge is identifying suspicious events in training sets where no anomalies are encountered. Part two of a two-part series.

The problem of anomaly detection is not new, and a number of solutions have already been proposed over the years. However, before starting with the list of techniques, let's agree on a necessary premise: All anomaly detection techniques must involve a training set where no anomaly examples are encountered. The challenge consists of identifying suspicious events, even in the absence of examples.

We talk in this case of a training set formed of only "normal" events. The definition of "normal" is, of course, arbitrary. In the case of anomaly detection, a "normal" event refers just to the events represented in the training set. Here are four common approaches.

Statistical Methods
Everything that falls outside of the statistical distribution calculated over the training set is considered an anomaly.

The simplest statistical method is the control chart. Here the average and standard deviation for each feature is calculated on the training set. Thresholds are then defined around the average value as k*std deviation where k is an arbitrary coefficient, usually between 1.5 and 3.0, depending on how conservative we want the algorithm to be. During deployment, a point trespassing the thresholds in both directions is a suspicious candidate for an anomaly event.

Such methods are easy to implement and understand, fast to execute, and fit both static and time series data. However, they might be too simple to detect more subtle anomalies.

Clustering
Other proposed methods are often clustering methods. Since the anomaly class is missing from the training set, clustering algorithms might sound suitable for the task.

The concept here is clear. The algorithm creates a number of clusters on the training set. During deployment, the distance between the current data point and the clusters is calculated. If the distance is above a given threshold, the data point becomes a suspicious candidate for an anomaly event. Depending on the distance measure used and on the aggregation rules, different clustering algorithms have been designed and different clusters are created.

This approach, however, does not fit time series data since a fixed set of clusters cannot capture the evolution in time.

Supervised Machine Learning
Surprised? Supervised machine learning algorithms can also be used for anomaly detection. They would even cover all data situations since supervised machine learning techniques can be applied to static classification as well as to time series prediction problems. However, since they all require a set of examples for all involved classes, we need a little change in perspective.

In the case of anomaly detection, a supervised machine learning model can only be trained on "normal" data — i.e., on data describing the system operating in "normal" conditions. The evaluation of whether the input data is an anomaly can only happen during deployment after the classification/prediction has been made.There are two popular approaches for anomaly detection relying on supervised learning techniques.

The first one is a neural autoassociator (or autoencoder). The autoassociator is trained to reproduce the input pattern onto the output layer. The pattern reproduction works fine as long as the input patterns are similar to the examples in the training set — i.e., “normal.” Things do not work quite as well when a new, different shape vector appears at the input layer. In this case, the network will not be able to adequately reproduce the input vector onto the output layer. If a distance is calculated between the input and the output of the network, the distance value will be higher for an anomaly rather than for a "normal" event. Again, defining a threshold on this distance measure should find the anomaly candidates. This approach works well for static data points but does not fit time series data.

The second approach uses algorithms for time series prediction. The model is trained to predict the value of the next sample based on the history of previous n samples on a training set of "normal" values. During deployment, the prediction of the next sample value will be relatively correct — i.e., close to the real sample value, if the past history comes from a system working in "normal" conditions. The predicted value will be farther from reality if the past history samples come from a system not working in "normal" conditions anymore. In this case, a distance measure calculated between the predicted sample value and the real sample value would isolate candidates for anomaly events.

Related Content: 

 

 

Join Dark Reading LIVE for two cybersecurity summits at Interop 2019. Learn from the industry's most knowledgeable IT security experts. Check out the Interop agenda here.

Rosaria Silipo, Ph.D., principal data scientist at KNIME, is the author of 50+ technical publications, including her most recent book "Practicing Data Science: A Collection of Case Studies". She holds a doctorate degree in bio-engineering and has spent more than 25 years ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
6 Emerging Cyber Threats That Enterprises Face in 2020
This Tech Digest gives an in-depth look at six emerging cyber threats that enterprises could face in 2020. Download your copy today!
Flash Poll
State of Cybersecurity Incident Response
State of Cybersecurity Incident Response
Data breaches and regulations have forced organizations to pay closer attention to the security incident response function. However, security leaders may be overestimating their ability to detect and respond to security incidents. Read this report to find out more.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-8144
PUBLISHED: 2020-04-01
The UniFi Video Server v3.9.3 and prior (for Windows 7/8/10 x64) web interface Firmware Update functionality, under certain circumstances, does not validate firmware download destinations to ensure they are within the intended destination directory tree. It accepts a request with a URL to firmware u...
CVE-2020-8145
PUBLISHED: 2020-04-01
The UniFi Video Server (Windows) web interface configuration restore functionality at the “backup� and “wizard� endpoints does not implement sufficient privilege checks. Low privileged users, belonging to the PUBLIC_GROUP ...
CVE-2020-8146
PUBLISHED: 2020-04-01
In UniFi Video v3.10.1 (for Windows 7/8/10 x64) there is a Local Privileges Escalation to SYSTEM from arbitrary file deletion and DLL hijack vulnerabilities. The issue was fixed by adjusting the .tsExport folder when the controller is running on Windows and adjusting the SafeDllSearchMode in the win...
CVE-2020-6009
PUBLISHED: 2020-04-01
LearnDash Wordpress plugin version below 3.1.6 is vulnerable to Unauthenticated SQL Injection.
CVE-2020-6096
PUBLISHED: 2020-04-01
An exploitable signed comparison vulnerability exists in the ARMv7 memcpy() implementation of GNU glibc 2.30.9000. Calling memcpy() (on ARMv7 targets that utilize the GNU glibc implementation) with a negative value for the 'num' parameter results in a signed comparison vulnerability. If an attacker ...