Vulnerabilities / Threats //

Insider Threats

3/16/2017
03:30 PM
Connect Directly
Facebook
Twitter
RSS
E-Mail
50%
50%

Sound Waves Used to Hack Common Data Sensors

Though the immediate threat to your smartphone or Fitbit is slight, University of Michigan researchers show command-and-control capability with spoofed signaling on a variety of MEMS accelerometers.

University of Michigan researchers have shown that sound waves can be used to hack into devices that use a commonly deployed piece of silicon called a MEMS accelerometer. Fitbits, smartphones, and a variety of medical devices and GPS locators all rely on accelerometers.

The bad news is that the sound-wave hack can be used to control an emerging class of autonomous devices such as drones, self-driving cars, and anything attached to the Internet of Things. The good news: The hack requires physical proximity, expertise in both mechanical and electrical engineering, and above-average programming skills, the researchers tell Dark Reading.

They also admit the actual threat is slight. "We're not saying the sky is falling," says Tim Trippel, one of the researchers and a PhD candidate in the computer science and engineering department at the University of Michigan. "But we need to think about software security and how the hardware can be stimulated environmentally with sound waves and [electromagnetic interference]. If attackers can craft the right type of vibration, they can make a device behave the way they way want it to."

Trippel says the research builds on a paper presented at a 2015 USENIX conference that showed how an acoustical blast could register on a drone as a gust of wind. But rather than just interfere with the accelerometer, the Michigan researchers are taking this to the next level with command-and-control capability.

To demonstrate the acoustical hack, the researchers played a YouTube video from a smartphone that prompted the phone to spell out the word walnut. "We laced a music video with the tones, demonstrating that the interference remains effective even when combined with videos and music that could be automatically played from websites, email attachments, Twitter links tapped on a smartphone," the researchers say in their paper, which will be presented at an IEEE security conference next month in Paris.

The Michigan researchers were also able to use audio tones to disrupt a Fitbit device, artificially adding steps to the device's daily tally. "We also took it a step further to see if we could steer a vehicle, which we did with a toy car," Trippel says.

But infosec professionals don't need to rush out and download a patch or swap out hardware. "This exploit is academic in nature and presents no real-world risk," says Mike Murray, VP of security research and response at mobile security vendor Lookout. "Accelerometer data isn't usually used for any significantly risky purpose."

Trippel says the acoustic attack requires more sophistication than just flooding a network with server requests like a distributed denial-of-service attack, for example. "Attackers would need some knowledge of the algorithms of the sensor data and the signal they're trying to spoof," he adds. "And they'd need physical proximity as well."

The researchers also alerted five chipmakers whose sensors they tested and found vulnerable: Analog Devices, Bosch, InvenSense, Murata Manufacturing, and STMicroelectronics. While acknowledging there's no fundamental flaw, Trippel would like to see the manufacturers alert component customers, who tend to automatically trust sensor data. "It's good hardware that does what it was designed to do," Trippel says, but manufacturers need to make customers who buy them aware so they know when they might fail.

"We're not trying to say all these devices are broken. But going into the age of autonomous systems, we need to be security-aware with hardware and software, and the information fed to those algorithms," Trippel says. With growing reliance on sensors to collect data for industry and consumers, the vulnerability needs to be addressed.

Related Content:

 

Terry Sweeney is a Los Angeles-based writer and editor who has covered technology, networking, and security for more than 20 years. He was part of the team that started Dark Reading and has been a contributor to The Washington Post, Crain's New York Business, Red Herring, ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Russia Hacked Clinton's Computers Five Hours After Trump's Call
Robert Lemos, Technology Journalist/Data Researcher,  4/19/2019
Why We Need a 'Cleaner Internet'
Darren Anstee, Chief Technology Officer at Arbor Networks,  4/19/2019
Tips for the Aftermath of a Cyberattack
Kelly Sheridan, Staff Editor, Dark Reading,  4/17/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
5 Emerging Cyber Threats to Watch for in 2019
Online attackers are constantly developing new, innovative ways to break into the enterprise. This Dark Reading Tech Digest gives an in-depth look at five emerging attack trends and exploits your security team should look out for, along with helpful recommendations on how you can prevent your organization from falling victim.
Flash Poll
The State of Ransomware
The State of Ransomware
Ransomware has become one of the most prevalent new cybersecurity threats faced by today's enterprises. This new report from Dark Reading includes feedback from IT and IT security professionals about their organization's ransomware experiences, defense plans, and malware challenges. Find out what they had to say!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-11469
PUBLISHED: 2019-04-23
Zoho ManageEngine Applications Manager 12 through 14 allows FaultTemplateOptions.jsp resourceid SQL injection. Subsequently, an unauthenticated user can gain the authority of SYSTEM on the server by uploading a malicious file via the "Execute Program Action(s)" feature.
CVE-2013-7470
PUBLISHED: 2019-04-23
cipso_v4_validate in include/net/cipso_ipv4.h in the Linux kernel before 3.11.7, when CONFIG_NETLABEL is disabled, allows attackers to cause a denial of service (infinite loop and crash), as demonstrated by icmpsic, a different vulnerability than CVE-2013-0310.
CVE-2019-11463
PUBLISHED: 2019-04-23
A memory leak in archive_read_format_zip_cleanup in archive_read_support_format_zip.c in libarchive through 3.3.3 allows remote attackers to cause a denial of service via a crafted ZIP file because of a HAVE_LZMA_H typo.
CVE-2019-0218
PUBLISHED: 2019-04-22
A vulnerability was discovered wherein a specially crafted URL could enable reflected XSS via JavaScript in the pony mail interface.
CVE-2019-11383
PUBLISHED: 2019-04-22
An issue was discovered in the Medha WiFi FTP Server application 1.8.3 for Android. An attacker can read the username/password of a valid user via /data/data/com.medhaapps.wififtpserver/shared_prefs/com.medhaapps.wififtpserver_preferences.xml