Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Vulnerabilities / Threats //

Insider Threats

3/16/2017
03:30 PM
Connect Directly
Facebook
Twitter
RSS
E-Mail
50%
50%

Sound Waves Used to Hack Common Data Sensors

Though the immediate threat to your smartphone or Fitbit is slight, University of Michigan researchers show command-and-control capability with spoofed signaling on a variety of MEMS accelerometers.

University of Michigan researchers have shown that sound waves can be used to hack into devices that use a commonly deployed piece of silicon called a MEMS accelerometer. Fitbits, smartphones, and a variety of medical devices and GPS locators all rely on accelerometers.

The bad news is that the sound-wave hack can be used to control an emerging class of autonomous devices such as drones, self-driving cars, and anything attached to the Internet of Things. The good news: The hack requires physical proximity, expertise in both mechanical and electrical engineering, and above-average programming skills, the researchers tell Dark Reading.

They also admit the actual threat is slight. "We're not saying the sky is falling," says Tim Trippel, one of the researchers and a PhD candidate in the computer science and engineering department at the University of Michigan. "But we need to think about software security and how the hardware can be stimulated environmentally with sound waves and [electromagnetic interference]. If attackers can craft the right type of vibration, they can make a device behave the way they way want it to."

Trippel says the research builds on a paper presented at a 2015 USENIX conference that showed how an acoustical blast could register on a drone as a gust of wind. But rather than just interfere with the accelerometer, the Michigan researchers are taking this to the next level with command-and-control capability.

To demonstrate the acoustical hack, the researchers played a YouTube video from a smartphone that prompted the phone to spell out the word walnut. "We laced a music video with the tones, demonstrating that the interference remains effective even when combined with videos and music that could be automatically played from websites, email attachments, Twitter links tapped on a smartphone," the researchers say in their paper, which will be presented at an IEEE security conference next month in Paris.

The Michigan researchers were also able to use audio tones to disrupt a Fitbit device, artificially adding steps to the device's daily tally. "We also took it a step further to see if we could steer a vehicle, which we did with a toy car," Trippel says.

But infosec professionals don't need to rush out and download a patch or swap out hardware. "This exploit is academic in nature and presents no real-world risk," says Mike Murray, VP of security research and response at mobile security vendor Lookout. "Accelerometer data isn't usually used for any significantly risky purpose."

Trippel says the acoustic attack requires more sophistication than just flooding a network with server requests like a distributed denial-of-service attack, for example. "Attackers would need some knowledge of the algorithms of the sensor data and the signal they're trying to spoof," he adds. "And they'd need physical proximity as well."

The researchers also alerted five chipmakers whose sensors they tested and found vulnerable: Analog Devices, Bosch, InvenSense, Murata Manufacturing, and STMicroelectronics. While acknowledging there's no fundamental flaw, Trippel would like to see the manufacturers alert component customers, who tend to automatically trust sensor data. "It's good hardware that does what it was designed to do," Trippel says, but manufacturers need to make customers who buy them aware so they know when they might fail.

"We're not trying to say all these devices are broken. But going into the age of autonomous systems, we need to be security-aware with hardware and software, and the information fed to those algorithms," Trippel says. With growing reliance on sensors to collect data for industry and consumers, the vulnerability needs to be addressed.

Related Content:

 

Terry Sweeney is a Los Angeles-based writer and editor who has covered technology, networking, and security for more than 20 years. He was part of the team that started Dark Reading and has been a contributor to The Washington Post, Crain's New York Business, Red Herring, ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
7 Tips for Infosec Pros Considering A Lateral Career Move
Kelly Sheridan, Staff Editor, Dark Reading,  1/21/2020
For Mismanaged SOCs, The Price Is Not Right
Kelly Sheridan, Staff Editor, Dark Reading,  1/22/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: This comment is waiting for review by our moderators.
Current Issue
IT 2020: A Look Ahead
Are you ready for the critical changes that will occur in 2020? We've compiled editor insights from the best of our network (Dark Reading, Data Center Knowledge, InformationWeek, ITPro Today and Network Computing) to deliver to you a look at the trends, technologies, and threats that are emerging in the coming year. Download it today!
Flash Poll
The State of Ransomware
The State of Ransomware
Ransomware has become one of the most prevalent new cybersecurity threats faced by today's enterprises. This new report from Dark Reading includes feedback from IT and IT security professionals about their organization's ransomware experiences, defense plans, and malware challenges. Find out what they had to say!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-16029
PUBLISHED: 2020-01-26
A vulnerability in the application programming interface (API) of Cisco Smart Software Manager On-Prem could allow an unauthenticated, remote attacker to change user account information which can prevent users from logging in, resulting in a denial of service (DoS) condition of the web interface. Th...
CVE-2020-3115
PUBLISHED: 2020-01-26
A vulnerability in the CLI of the Cisco SD-WAN Solution vManage software could allow an authenticated, local attacker to elevate privileges to root-level privileges on the underlying operating system. The vulnerability is due to insufficient input validation. An attacker could exploit this vulnerabi...
CVE-2020-3121
PUBLISHED: 2020-01-26
A vulnerability in the web-based management interface of Cisco Small Business Smart and Managed Switches could allow an unauthenticated, remote attacker to conduct a cross-site scripting (XSS) attack against a user of the interface. The vulnerability is due to insufficient validation of user-supplie...
CVE-2020-3129
PUBLISHED: 2020-01-26
A vulnerability in the web-based management interface of Cisco Unity Connection Software could allow an authenticated, remote attacker to perform a stored cross-site scripting (XSS) attack. The vulnerability is due to insufficient input validation by the web-based management interface. An attacker c...
CVE-2020-3131
PUBLISHED: 2020-01-26
[CVE-2020-3131_su] A vulnerability in the Cisco Webex Teams client for Windows could allow an authenticated, remote attacker to cause the client to crash, resulting in a denial of service (DoS) condition. The attacker needs a valid developer account to exploit this vulnerability. The vulnerability i...