Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Perimeter

5/17/2011
08:24 AM
Dark Reading
Dark Reading
Products and Releases
50%
50%

Today's Crimeware Life Cycle

Advanced malware is a slippery beast, but understanding its crime life cycle offers hope for successful defense strategies

As an industry, we've spent an inordinate amount of time characterizing the malware we observe propagating the Internet or breaching our corporate defenses. Because of our capability to label so many varieties and features, we've become hypnotized by the intricacies of the software element of the threat. Malware is the threat. And today we're being even drawn even further in to the trance with "advanced malware."

For those actually charged with the day-to-day defense of their corporate systems, the malware threat can typically be divided neatly in to two components -- malware delivery channels that bypass layers of corporate defenses, and the malware component that gets left behind on the compromised system. The "advanced" form of the threat basically translates to being "better" at the evasion part and having enhanced remote control functionality.

The past decade saw the threat transition from annoying virus to destructive malware. For the past few years, the threat has evolved further -- in to the realm of financially driven crimeware. Despite all the public attention this transition has garnered, few appreciate the changes going on behind the scene.

Instead of admiring the fine brushstrokes of a painting, sometimes you need to stand back a little to take in the picture as a whole. The hypnotic allure of malware dissections and high-profile breaches has prevented many organizations from understanding the dynamics of the real threat -- crimeware and the ecosystem that supports it.

Even those that know their droppers from their downloaders too often fail to grasp the relationships between the vendors, service providers, and tool manufacturers that contributed to the success of an attack. Add to that an increasingly false and outdated assumption of an attack is the personification of an "attacker." It's far more likely that many hands were involved in constructing and delivering the attack -- most of whom had no idea of who else was involved and not caring to know.

Back in the days when malware was just malware, a malicious dropper would be downloaded from a server the bad guys owned (or hacked) following the successful exploitation of a vulnerability within the victim's Web browser or via an unpatched plug-in. That dropper would then automatically unpack itself, extract its malicious payload, deactivate or prevent any local defenses from working, and finally start its core remote control agent -- making an outbound connection to a command-and-control (CnC) server and seeking instructions.

With evolution proceeding from malware to crimeware, the installation life cycle has changed substantially. In an effort to thwart the layers of defense deployed within the network or on the host, many additional steps have been introduced by the attackers -- a lot of which are not only subcontracted to third-party service providers, but have become full-scale businesses in their own right, operating in legal gray areas.

The crimeware installation process also incorporates a number of checks and balances designed to increase the robustness of the attack against detection and deception. Having invested substantial time and materials into an attack among multiple vested parties, cybercriminals are loathe to have their malware fall prey to automated analysis systems and honeypots. As such, they have incorporated steps that validate the authenticity of the victim prior to installation of the core crimeware components. From a service provisioning perspective, the new infection life cycle enhances the overall ecosystem and provides additional monetization opportunities.

For a more detailed dissection of the threat (as it stands today), I've released a new whitepaper -- "Behind Today's Crimeware Installation Lifecycle" -- covering how advanced malware morphs to remain stealthy and persistent. Understanding your opponent remains at the heart of a sound defensive strategy. In this case, though, your "opponent" shouldn't be thought of in a singular sense, but rather an increasingly well-oiled federated cybercrime ecosystem.

Gunter Ollmann is research vice president at Damballa.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 11/19/2020
New Proposed DNS Security Features Released
Kelly Jackson Higgins, Executive Editor at Dark Reading,  11/19/2020
How to Identify Cobalt Strike on Your Network
Zohar Buber, Security Analyst,  11/18/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win an Amazon Gift Card! Click Here
Latest Comment: A GONG is as good as a cyber attack.
Current Issue
2021 Top Enterprise IT Trends
We've identified the key trends that are poised to impact the IT landscape in 2021. Find out why they're important and how they will affect you today!
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-5641
PUBLISHED: 2020-11-24
Cross-site request forgery (CSRF) vulnerability in GS108Ev3 firmware version 2.06.10 and earlier allows remote attackers to hijack the authentication of administrators and the product's settings may be changed without the user's intention or consent via unspecified vectors.
CVE-2020-5674
PUBLISHED: 2020-11-24
Untrusted search path vulnerability in the installers of multiple SEIKO EPSON products allows an attacker to gain privileges via a Trojan horse DLL in an unspecified directory.
CVE-2020-29002
PUBLISHED: 2020-11-24
includes/CologneBlueTemplate.php in the CologneBlue skin for MediaWiki through 1.35 allows XSS via a qbfind message supplied by an administrator.
CVE-2020-29003
PUBLISHED: 2020-11-24
The PollNY extension for MediaWiki through 1.35 allows XSS via an answer option for a poll question, entered during Special:CreatePoll or Special:UpdatePoll.
CVE-2020-26890
PUBLISHED: 2020-11-24
Matrix Synapse before 1.20.0 erroneously permits non-standard NaN, Infinity, and -Infinity JSON values in fields of m.room.member events, allowing remote attackers to execute a denial of service attack against the federation and common Matrix clients. If such a malformed event is accepted into the r...