Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Perimeter

2/13/2013
01:51 PM
Adrian Lane
Adrian Lane
Commentary
50%
50%

Security Analytics And Big Data

Does big data impact security?

I get a flood of announcements about how using big data clusters to analyze the mountains of event data companies collect will "transform" security as we know it. I think this is wrong.

What I think is this: Big data capabilities close the gap between what SIEM platforms overpromised a decade ago and what they deliver today.

First, some background. Most of the owners and operators of SIEM platforms I speak with are not happy with the platform they own/manage/use. There are lots of reasons for this, but scalability, data collection, performance, and management difficulty top the list. SIEM is a must-have technology for most enterprises because it provides critical data to compliance and operations teams, and, in many cases, it's core to security teams as well. But that does not mean the customers are happy or are not looking for something better.

Three areas have invalidated assumptions on which SIEM buying decisions were made during the past five years -- three areas where buyer's anticipated need and vendor's anticipated capabilities both missed the mark. What buyers thought they would need to address compliance requirements, security threats, and volume(s) of event data was, in fact, well below what they really needed.

So how does big data play into this? Three reasons. First, the architectural advantages of big data clusters allow them to handle larger amounts of data very quickly, and scale up with the number of events being generated. Second, the query and analysis capabilities offered by most big data clusters offers faster, more flexible approaches to combing through the data collected. Finally, big data can be embedded into, or be integrated as, a peer application to existing SIEM deployments.

But beyond the native capabilities to address scale and "input velocity" -- inherent traits of big data -- it's all speculation. Yes, big data offers a great deal of flexibility in how it can mine data. And adoption of big data infrastructure to house event data helps solve the volumetric and speed issues customers experience with SIEM. That's why it's being touted as a technology that will transform security analytics.

But for the analysis to occur, someone needs to actually write the scripts to analyze the data. Someone needs to actually put Map-Reduce or similar queries to work. And they need to know what data they are interested in examining. The reports, forensic analysis tools, visualization capabilities, data correlation, and enrichment will need to be built. Today, that's just an idea. It's potential. And for anyone who watches NFL or NBA drafts can tell you, lots of time potential does not pan out.

Someone needs to put in the work to make the promise of big data a reality. Yes, we can get better analysis, and get it faster than before, but there is a lot of work to be done to get there. Some features will undoubtedly be provided by vendors and some by your internal development teams; most likely it will be a combination of both. The core technology is likely to address a couple of limiting factors (scale, timeliness of analysis, flexible query options) in the near term; the rest (reports, rules, controls, alerts, forensic tools) will be the same problem you have today.

If you did not have the time to write SIEM policies in the past, then it's likely you won't have time to write the queries for big data deployments in your future.

Adrian Lane is an analyst/CTO with Securosis LLC, an independent security consulting practice. Special to Dark Reading. Adrian Lane is a Security Strategist and brings over 25 years of industry experience to the Securosis team, much of it at the executive level. Adrian specializes in database security, data security, and secure software development. With experience at Ingres, Oracle, and ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
JCharles
50%
50%
JCharles,
User Rank: Apprentice
2/15/2013 | 3:45:46 PM
re: Security Analytics And Big Data
A Big Data Mining Tool that does SIEM and that is scalable & easy. Well then check out Secnology.
dangleebits2
50%
50%
dangleebits2,
User Rank: Apprentice
2/14/2013 | 12:43:15 AM
re: Security Analytics And Big Data
Your gonna need a new security role to fill the gap like this one-http://bigsnarf.wordpress.com/...
COVID-19: Latest Security News & Commentary
Dark Reading Staff 9/25/2020
Hacking Yourself: Marie Moe and Pacemaker Security
Gary McGraw Ph.D., Co-founder Berryville Institute of Machine Learning,  9/21/2020
Startup Aims to Map and Track All the IT and Security Things
Kelly Jackson Higgins, Executive Editor at Dark Reading,  9/22/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-15208
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can ...
CVE-2020-15209
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one....
CVE-2020-15210
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and ...
CVE-2020-15211
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices f...
CVE-2020-15212
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `outpu...