Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Endpoint

11/10/2009
04:31 PM
Connect Directly
Google+
Twitter
RSS
E-Mail
50%
50%

Researchers Building Tools To Clean Up Infected Smart Phones Via The Wireless Network

Georgia Tech working on tools for wireless providers to fix compromised phones remotely

Researchers at Georgia Tech are developing tools for cleaning up mobile phones infected with malware remotely over the mobile network -- an approach that would ultimately give wireless providers a less intrusive method of restoring compromised smartphones.

The National Science Foundation recently awarded the Georgia Tech College of Computing a three-year, $450,000 grant for the project to develop tools to advance the security of mobile devices and their networks.

Jonathon Giffin, an assistant professor at Georgia Tech's School of Computer Science, says the project was a natural progression from previous research performed by the university demonstrating how an attacker could take down a cellular network with malicious SMS text messages in a distributed denial-of-service (DDoS) attack. "We want to help wireless providers and give them a next step after detection," Giffin says. "There's no action to take right now. They're unwilling to terminate service because that would cause them to lose a customer."

Cellular providers face the same issues with their wireless subscribers as with their broadband Internet customers: not being too invasive when helping an infected machine, nor shutting them off the service altogether.

So today it's mostly up to the user to do something about their compromised smartphones. "Right now the way most people clean up virus-infected phones is to buy a new phone," says Robert Graham, CEO of Errata Security.

Georgia Tech's Giffin says the project will build a "remote repair" option for service providers that lets them disable the malware they detect running on a user's smartphone. "It would involve having a small base of trusted software on the phone," he says, adding that the researchers have even considered a virtual machine approach. "This software [on the handheld] responds to commands coming from the network to help the software take certain actions, [such as to] disable the [malicious] software and report information back to the network to help the network decide what the attack is."

Graham says the trouble with the Georgia Tech approach, however, is it requires the mobile provider to run "arbitrary code" on the user's phone. "That has several flaws," he says. Viruses could likely disable that software, he says, rendering it useless. And such an approach would kill the process of "unlocking" a phone from a particular carrier, for instance, he says.

"It [also] means the FBI could subpoena your carrier in order to send something nasty to your phone," Graham says.

Georgia Tech is working with Android phones in its research, mainly because it's an open-source technology. Giffin says the remote repair could entail disabling some functionality on the phone (think apps) and, in some cases, might require the user to plug the phone into a USB for "some heavyweight analysis to identify the malware if the [service provider] can't identify the malware," he says.

The phone's voice calling and text messaging functions would remain operational during the recovery/repair process, however.

Giffin says the toughest part of the project will be identifying the actual malicious code running on the smartphones. "From a network perspective, you know it's [the phone] behaving badly. But identifying [the source of the problem] can also be a hard problem," he says.

Georgia Tech also plans to build a testbed wireless network on campus to test out the tools. Giffin says the network-based repair approach makes more sense than trying to squeeze desktop security tools onto smartphones. "Moving antivirus onto a mobile device isn't effective," he says. "Mobile devices have constraints like battery use and slower processors. We don't think these tools translate well to the mobile space...and we've seen that antivirus isn't terribly effective on the desktop."

With centralized network locations, the researchers will have a better vantage point to observe attacks and start the recovery process, he says.

The researchers hope to publish a paper on their findings around August of next year, he says.

Have a comment on this story? Please click "Discuss" below. If you'd like to contact Dark Reading's editors directly, send us a message. Kelly Jackson Higgins is the Executive Editor of Dark Reading. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 9/25/2020
Hacking Yourself: Marie Moe and Pacemaker Security
Gary McGraw Ph.D., Co-founder Berryville Institute of Machine Learning,  9/21/2020
Startup Aims to Map and Track All the IT and Security Things
Kelly Jackson Higgins, Executive Editor at Dark Reading,  9/22/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-15208
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can ...
CVE-2020-15209
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one....
CVE-2020-15210
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and ...
CVE-2020-15211
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices f...
CVE-2020-15212
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `outpu...