Endpoint

7/3/2012
04:06 PM
Dark Reading
Dark Reading
Products and Releases
50%
50%

PIN Pads Put Millions At Risk, Researchers Say

Payment terminals handled more than 852 million card payments in the U.K. alone in April 2012

Payment terminals, known as PIN Pads, are putting hundreds of millions of consumers worldwide at risk everyday a British IT security company is warning.

Click here for more of Dark Reading's Black Hat articles.

The terminals, which are used by retailers, handled more than 852 million card payments in the UK alone in April 2012 according to the UK Cards Association.

Researchers at MWR InfoSecurity have found that the terminals are not secure and codes can be introduced by malicious smartcards that will then allow criminals to have access not only to a customer’s PIN and PAN (Primary Account Number shown on the front of a plastic card) numbers but also gain access to the merchant’s network.

“Our research shows security of PIN Pads is below that which consumers should expect for transactions of this nature. The security employed in the software is not up to the job for such sensitive transactions, leaving the devices open to many forms of attack”, said Ian Shaw, Managing Director of MWR InfoSecurity.

“As a result of this, a sophisticated attacker may be able to compromise these terminals to the extent that it would be very difficult to identify if they had been breached.”

“Our investigations have shown that the range of vulnerabilities found in these devices, now part of the everyday shopping experience, could compromise consumers’ card details and PIN numbers. It may also leave merchants unprotected and cause serious disruption to their businesses, potentially exposing both of them to serious fraud”, he added.

For example, a customer at a restaurant could pretend to be making a payment with a “Trojan card” but instead has gained access to the payment terminal. From that point onwards, all pin numbers and other card holder information that passes through that terminal can be gathered by the criminal. They can then take advantage of a number of existing communication channels, such as Internet connection –Wireless, Bluetooth, mobile networks– or phone lines to retrieve that information. Alternatively, the criminal could return and insert again the malicious smartcard to collect the recorded data from the payment device.

“Generally, efforts are being directed to securing the PIN Pads physically but the software installed in the terminals remains highly vulnerable. Even the typical consumer smartphone deploys more security features than the technology used in these devices”, said Ian Shaw.

MWR InfoSecurity has been carrying out research on payment terminals that exchange information with this type of card and has found an alarming range of weaknesses shared by vendors of these devices in UK.

The firm has contacted the vendors and has shared their discoveries with them but at the moment is not able to provide any further details in an effort to prevent criminals from taking advantage of the situation.

“We need to work together with the vendors so that the problem is dealt with quickly”, concluded Shaw.

However, MWR believes this is very serious issue and will be highlighting a number of vulnerabilities it has identified and demonstrating its findings at the Black Hat security conference in Las Vegas on July 25th.

MWR InfoSecurity supplies services which support clients in identifying, managing and mitigating their Information Security risks.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Want Your Daughter to Succeed in Cyber? Call Her John
John De Santis, CEO, HyTrust,  5/16/2018
Don't Roll the Dice When Prioritizing Vulnerability Fixes
Ericka Chickowski, Contributing Writer, Dark Reading,  5/15/2018
Why Enterprises Can't Ignore Third-Party IoT-Related Risks
Charlie Miller, Senior Vice President, The Santa Fe Group,  5/14/2018
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: "Security through obscurity"
Current Issue
How to Cope with the IT Security Skills Shortage
Most enterprises don't have all the in-house skills they need to meet the rising threat from online attackers. Here are some tips on ways to beat the shortage.
Flash Poll
[Strategic Security Report] How Enterprises Are Attacking the IT Security Problem
[Strategic Security Report] How Enterprises Are Attacking the IT Security Problem
Enterprises are spending more of their IT budgets on cybersecurity technology. How do your organization's security plans and strategies compare to what others are doing? Here's an in-depth look.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-11232
PUBLISHED: 2018-05-18
The etm_setup_aux function in drivers/hwtracing/coresight/coresight-etm-perf.c in the Linux kernel before 4.10.2 allows attackers to cause a denial of service (panic) because a parameter is incorrectly used as a local variable.
CVE-2017-15855
PUBLISHED: 2018-05-17
In Qualcomm Android for MSM, Firefox OS for MSM, and QRD Android with all Android releases from CAF using the Linux kernel, the camera application triggers "user-memory-access" issue as the Camera CPP module Linux driver directly accesses the application provided buffer, which resides in u...
CVE-2018-3567
PUBLISHED: 2018-05-17
In Qualcomm Android for MSM, Firefox OS for MSM, and QRD Android with all Android releases from CAF using the Linux kernel, a buffer overflow vulnerability exists in WLAN while processing the HTT_T2H_MSG_TYPE_PEER_MAP or HTT_T2H_MSG_TYPE_PEER_UNMAP messages.
CVE-2018-3568
PUBLISHED: 2018-05-17
In Qualcomm Android for MSM, Firefox OS for MSM, and QRD Android with all Android releases from CAF using the Linux kernel, in __wlan_hdd_cfg80211_vendor_scan(), a buffer overwrite can potentially occur.
CVE-2018-5827
PUBLISHED: 2018-05-17
In Qualcomm Android for MSM, Firefox OS for MSM, and QRD Android with all Android releases from CAF using the Linux kernel, a buffer overflow vulnerability exists in WLAN while processing an extscan hotlist event.