Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Risk

9/21/2020
09:30 AM
Gary McGraw Ph.D.
Gary McGraw Ph.D.
Expert Insights
Connect Directly
Twitter
RSS
E-Mail
50%
50%

Hacking Yourself: Marie Moe and Pacemaker Security

Future consumer devices, including pacemakers, should be built with security from the start.

There is a very long tradition of hacking your own stuff in the security community, but when it comes to hacking yourself, Marie Moe is in a different league. Dr. Moe, who is now a senior security consultant at Oslo-based cybersecurity firm mnemonic, has also served as a scientific researcher at SINTEF and a professor at the Norwegian University of Science and Technology (NTNU). But an even more interesting thing about Dr. Moe - who has a pacemaker installed in her body - is that she became very curious about its security profile.

Five years ago in 2015, about four years after getting a BIOTRONIK CardioMessenger II pacemaker put in her body, Marie initiated the Pacemaker Hacking Project. The main focus at the time was to understand how the very device her life depends on would withstand outside security scrutiny. In short, Marie wanted to know whether someone could hack her heart.

Related Content:

Ripple20 Threatens Increasingly Connected Medical Devices

The Threat from the Internet—and What Your Organization Can Do About It

New on The Edge: Don't Fall for It! Defending Against Deepfakes

In July 2020, Marie released a set of security findings that had been embargoed for over a year in a coordinated vulnerability disclosure process. Ultimately, though the five vulnerabilities she and her research group found are serious enough to warrant their own CERT Advisory and involvement of the Federal Drug Administration, the vendor does not plan to issue any product updates. Note for the record that so far, "no known public exploits specifically target these vulnerabilities," the Advisory says. Also note that these vulnerabilities can't be used to directly reprogram a pacemaker or hack someone's heart.

The five vulnerabilities are:

  • Improper authentication
  • Cleartext credential transmission before encryption
  • Credential reuse
  • In-the-clear storage of medical data
  • Incorrect password storage on device

A technical description of the testing and analysis project carried out by Guillaume Bour to uncover these vulnerabilities can be found here.

Who's at Risk

Pacemaker devices are a big industry, with an estimated one million of them installed in patients every year. Remote data-gathering and transmission over the Internet is now standard issue. This usually involves a home monitoring unit that is issued to the patient when they are sent home with a new pacemaker. So all of these patients are at risk of having their medical data extracted.

As even security beginners know, when you connect a device (or devices) through a public communications network, care must be taken not to expose the system to attacker-in-the-middle attacks. This is particularly concerning when it comes to medical data that directly impact a patient's life. Apparently, the pacemaker in question sets up its communications particularly poorly.

How Do We Fix This?

Medical devices like pacemakers are not the only Internet-enabled devices entering mainstream consumer and enterprise situations. In the not-too-distant future, coming across a non Internet-enabled device will be the rare event­ — that is, everything will at the very least communicate across the Net. The obvious solution to eradicating vulnerabilities like the ones Marie and her group found is building security in. The days of fly-by-night security communications protocol design and super-weak applied cryptography are numbered. Right?

 

 

Gary McGraw is co-founder of the Berryville Institute of Machine Learning. He is a globally recognized authority on software security and the author of eight best selling books on this topic. His titles include Software Security, Exploiting Software, Building Secure Software, ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
dwallonline
50%
50%
dwallonline,
User Rank: Apprentice
9/23/2020 | 7:46:12 AM
Re: Good one

Thanks for your article, it is a great source of info!

 

Naijalitz
100%
0%
Naijalitz,
User Rank: Apprentice
9/22/2020 | 12:10:51 AM
Good one
I have read your article, it is very informative and helpful to me. Thank you for sharing great information to us
COVID-19: Latest Security News & Commentary
Dark Reading Staff 10/27/2020
Chinese Attackers' Favorite Flaws Prove Global Threats, Research Shows
Kelly Sheridan, Staff Editor, Dark Reading,  10/27/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-11484
PUBLISHED: 2020-10-29
NVIDIA DGX servers, all DGX-1 with BMC firmware versions prior to 3.38.30, contains a vulnerability in the AMI BMC firmware in which an attacker with administrative privileges can obtain the hash of the BMC/IPMI user password, which may lead to information disclosure.
CVE-2020-11485
PUBLISHED: 2020-10-29
NVIDIA DGX servers, all DGX-1 with BMC firmware versions prior to 3.38.30, contains a Cross-Site Request Forgery (CSRF) vulnerability in the AMI BMC firmware in which the web application does not sufficiently verify whether a well-formed, valid, consistent request was intentionally provided by the u...
CVE-2020-11486
PUBLISHED: 2020-10-29
NVIDIA DGX servers, all DGX-1 with BMC firmware versions prior to 3.38.30, contain a vulnerability in the AMI BMC firmware in which software allows an attacker to upload or transfer files that can be automatically processed within the product's environment, which may lead to remote code execution.
CVE-2020-11487
PUBLISHED: 2020-10-29
NVIDIA DGX servers, DGX-1 with BMC firmware versions prior to 3.38.30. DGX-2 with BMC firmware versions prior to 1.06.06 and all DGX A100 Servers with all BMC firmware versions, contains a vulnerability in the AMI BMC firmware in which the use of a hard-coded RSA 1024 key with weak ciphers may lead ...
CVE-2020-11488
PUBLISHED: 2020-10-29
NVIDIA DGX servers, all DGX-1 with BMC firmware versions prior to 3.38.30 and all DGX-2 with BMC firmware versions prior to 1.06.06, contains a vulnerability in the AMI BMC firmware in which software does not validate the RSA 1024 public key used to verify the firmware signature, which may lead to i...