Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Risk

11/22/2011
05:33 PM
Connect Directly
Google+
Twitter
RSS
E-Mail
50%
50%

Google Ratchets Up Security Of HTTPS

'Forward secret' HTTPS feature now protects Gmail, SSL Search, Google Docs, and Google+

Google today announced that its SSL-based services are now enhanced to prevent HTTP sessions from being decrypted.

The so-called "forward secrecy" feature basically protects an HTTPS-secured session from being retroactively decrypted, according to Adam Langley, a member of the Google security team. So if a bad guy were to attempt to decrypt HTTPS sessions he had recorded, he would be unable to do so, Langley says.

"Most major sites supporting HTTPS operate in a non-forward secret fashion, which runs the risk of retrospective decryption," Langley said in a blog post announcing the new security feature today. "In other words, an encrypted, unreadable email could be recorded while being delivered to your computer today. In ten years time, when computers are much faster, an adversary could break the server private key and retrospectively decrypt today’s email traffic."

Forward secrecy is different than nonforward secrecy, where the private keys for an SSL connection are stored for the long term. With forward secrecy, no one can go back and decrypt a recorded HTTPS session, not even the SSL server administrator, Langley says.

Secure Sockets Layer (SSL) has been under siege lately with one certificate authority after another getting hacked, its inherent vulnerability to man-in-the-middle attacks, as well as the high volume of SSL-based websites that are improperly configured.

Ivan Ristic, director of engineering at Qualys and an SSL expert, says Google's addition of forward secrecy "is communication channel encryption done right."

It also prevents governments from decrypting recorded traffic. "Without it, they might try to get Google's private keys. So Google is removing a potentially big liability for them with this move. Perhaps that was their main motivation," he says.

Google is also placing the forward secrecy technology in the public domain in hopes that it will become part and parcel of HTTPS implementations. "We have also released the work that we did on the open source OpenSSL library that made this possible," Langley says.

Users can confirm whether forward-secrecy is running in their Chrome browsers by clicking the green padlock to the left of an HTTPS URL: The key exchange mechanism is ECDHE_RSA if the new feature is active in the browser app.

Have a comment on this story? Please click "Add Your Comment" below. If you'd like to contact Dark Reading's editors directly, send us a message.

Kelly Jackson Higgins is Executive Editor at DarkReading.com. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
US Turning Up the Heat on North Korea's Cyber Threat Operations
Jai Vijayan, Contributing Writer,  9/16/2019
Preventing PTSD and Burnout for Cybersecurity Professionals
Craig Hinkley, CEO, WhiteHat Security,  9/16/2019
NetCAT Vulnerability Is Out of the Bag
Dark Reading Staff 9/12/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
7 Threats & Disruptive Forces Changing the Face of Cybersecurity
This Dark Reading Tech Digest gives an in-depth look at the biggest emerging threats and disruptive forces that are changing the face of cybersecurity today.
Flash Poll
The State of IT Operations and Cybersecurity Operations
The State of IT Operations and Cybersecurity Operations
Your enterprise's cyber risk may depend upon the relationship between the IT team and the security team. Heres some insight on what's working and what isn't in the data center.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-3738
PUBLISHED: 2019-09-18
RSA BSAFE Crypto-J versions prior to 6.2.5 are vulnerable to an Improper Verification of Cryptographic Signature vulnerability. A malicious remote attacker could potentially exploit this vulnerability to coerce two parties into computing the same predictable shared key.
CVE-2019-3739
PUBLISHED: 2019-09-18
RSA BSAFE Crypto-J versions prior to 6.2.5 are vulnerable to Information Exposure Through Timing Discrepancy vulnerabilities during ECDSA key generation. A malicious remote attacker could potentially exploit those vulnerabilities to recover ECDSA keys.
CVE-2019-3740
PUBLISHED: 2019-09-18
RSA BSAFE Crypto-J versions prior to 6.2.5 are vulnerable to an Information Exposure Through Timing Discrepancy vulnerabilities during DSA key generation. A malicious remote attacker could potentially exploit those vulnerabilities to recover DSA keys.
CVE-2019-3756
PUBLISHED: 2019-09-18
RSA Archer, versions prior to 6.6 P3 (6.6.0.3), contain an information disclosure vulnerability. Information relating to the backend database gets disclosed to low-privileged RSA Archer users' UI under certain error conditions.
CVE-2019-3758
PUBLISHED: 2019-09-18
RSA Archer, versions prior to 6.6 P2 (6.6.0.2), contain an improper authentication vulnerability. The vulnerability allows sysadmins to create user accounts with insufficient credentials. Unauthenticated attackers could gain unauthorized access to the system using those accounts.