Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Perimeter

3/9/2011
10:24 AM
Adrian Lane
Adrian Lane
Commentary
50%
50%

Database Lockdown In The Cloud

In the cloud, we turn things around a bit and focus on data security rather than the database container

In this post, I'll describe the data-centric security life cycle. This approach is in contrast to many existing database security models, where the focus of the efforts is on securing the database container. This turns things around a bit and focuses on data security.

Most database security programs focus on patching and configuration of the database in order to protect infrastructure from vulnerabilities. Access controls limit data access depending on user roles and credentials. This model works well when we have a static database infrastructure and can rely on a set of services to fortify security.

But with cloud services, some of the basic infrastructure and trust relationships we have come to rely on are not available or require different deployment to work properly. For example, snapshots and machine images are designed to be recovered quickly, but the cloud does not inherently differentiate good from bad, meaning both intended and rogue instances can be booted and serve content. If you rely on your SAN or tape archival systems to encrypt data at rest, then you need to compensate for the lack of that built-in feature when moving to the cloud.

The goal is to reorient your security program to protect the information, minimizing reliance on security provided by the database, network, platform or places where it's stored. Since we don't necessarily know what the infrastructure is, where it is located, or who has access, we need to account for data security as data moves into and through the cloud. Domain 5 of the CSA Security Guidance (PDF) has a nice picture that illustrates the data centric security process. We define five phases or states: Definition, Storage, Use, Archival and Destruction.

As data moves from one phase to another, we apply specific protections that are appropriate to that phase. To start the process, we define data security measures as we discover data in, or move data to, the cloud. As data is stored, it's encrypted by the database or application, with access controls and rights management governing retrieval. Applications build in logical controls for the retrieval of information and rely on activity monitoring and rights management to enforce security policies. Use of DLP and content monitoring governs whether data can be moved, and encryption and application security controls secure authorized data exchanges. Finally, archival and destruction are managed by encryption, asset, and key management services to secure images that could reside on cheap storage in perpetuity.

Before I go into detail on each of these states, I need to quickly discuss why this is different and, hopefully, why it is more appropriate to cloud environments.

Each cloud delivery model (SaaS, PaaS, IaaS) has different security challenges. Log files in a multitenant IaaS or PaaS environment are not always available from your provider because they contain information from other users as well as your own. So not only are you unable to review the logs, they usually contain sensitive information. For SaaS we can't encrypt data prior to putting it in the cloud as we break the application. That means you are reliant on the provider to secure files and archives and to police their administrators.

In a nutshell, you don't really know who has access to your data or have the ability to audit the providers security controls. The data-centric security model is intended to wrap the data in a protective layer, reducing exposure and reliance on infrastructure security.

In the next post, I'll cover the definition and storage phases, and discuss specific technologies that are applied to secure data within that phase.

Adrian Lane is an analyst/CTO with Securosis LLC, an independent security consulting practice. Special to Dark Reading. Adrian Lane is a Security Strategist and brings over 25 years of industry experience to the Securosis team, much of it at the executive level. Adrian specializes in database security, data security, and secure software development. With experience at Ingres, Oracle, and ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Data Leak Week: Billions of Sensitive Files Exposed Online
Kelly Jackson Higgins, Executive Editor at Dark Reading,  12/10/2019
Intel Issues Fix for 'Plundervolt' SGX Flaw
Kelly Jackson Higgins, Executive Editor at Dark Reading,  12/11/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
The Year in Security: 2019
This Tech Digest provides a wrap up and overview of the year's top cybersecurity news stories. It was a year of new twists on old threats, with fears of another WannaCry-type worm and of a possible botnet army of Wi-Fi routers. But 2019 also underscored the risk of firmware and trusted security tools harboring dangerous holes that cybercriminals and nation-state hackers could readily abuse. Read more.
Flash Poll
Rethinking Enterprise Data Defense
Rethinking Enterprise Data Defense
Frustrated with recurring intrusions and breaches, cybersecurity professionals are questioning some of the industrys conventional wisdom. Heres a look at what theyre thinking about.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-5252
PUBLISHED: 2019-12-14
There is an improper authentication vulnerability in Huawei smartphones (Y9, Honor 8X, Honor 9 Lite, Honor 9i, Y6 Pro). The applock does not perform a sufficient authentication in a rare condition. Successful exploit could allow the attacker to use the application locked by applock in an instant.
CVE-2019-5235
PUBLISHED: 2019-12-14
Some Huawei smart phones have a null pointer dereference vulnerability. An attacker crafts specific packets and sends to the affected product to exploit this vulnerability. Successful exploitation may cause the affected phone to be abnormal.
CVE-2019-5264
PUBLISHED: 2019-12-13
There is an information disclosure vulnerability in certain Huawei smartphones (Mate 10;Mate 10 Pro;Honor V10;Changxiang 7S;P-smart;Changxiang 8 Plus;Y9 2018;Honor 9 Lite;Honor 9i;Mate 9). The software does not properly handle certain information of applications locked by applock in a rare condition...
CVE-2019-5277
PUBLISHED: 2019-12-13
Huawei CloudUSM-EUA V600R006C10;V600R019C00 have an information leak vulnerability. Due to improper configuration, the attacker may cause information leak by successful exploitation.
CVE-2019-5254
PUBLISHED: 2019-12-13
Certain Huawei products (AP2000;IPS Module;NGFW Module;NIP6300;NIP6600;NIP6800;S5700;SVN5600;SVN5800;SVN5800-C;SeMG9811;Secospace AntiDDoS8000;Secospace USG6300;Secospace USG6500;Secospace USG6600;USG6000V;eSpace U1981) have an out-of-bounds read vulnerability. An attacker who logs in to the board m...