Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Risk

12/19/2010
08:42 PM
George V. Hulme
George V. Hulme
Commentary
50%
50%

Security Design Fail

It's common for routers to enable an HTTPS interface so that the device can be remotely administered. However, as was made clear this weekend, many routers are secured with hard-coded SSL keys that can be extracted and used by others.

It's common for routers to enable an HTTPS interface so that the device can be remotely administered. However, as was made clear this weekend, many routers are secured with hard-coded SSL keys that can be extracted and used by others.That was the news posted to the /dev/ttyS0 blog today. The hard-coded SSL keys are found in many routers supported by DD-WRT, as well as routers from Cisco and Netgear.

From the /dev/ttyS0 blog post, Breaking SSL on Embedded Devices:

Here's where it gets fun: many of these devices use hard-coded SSL keys that are baked into the firmware. That means that if Alice and Bob are both using the same router with the same firmware version, then both of their routers have the same SSL keys. All Eve needs to do in order to decrypt their traffic is to download the firmware from the vendor's Web site and extract the SSL private key from the firmware image.

However, there are some practical limitations to this attack. If Eve doesn't know what router or firmware version Alice and Bob are using, it will be difficult to impossible for her to identify which firmware image to extract the SSL keys from. A good example of this is DD-WRT. There are several versions of DD-WRT available for each router supported by DD-WRT. And for each of those versions, there are several different "flavors": micro, standard, VPN, etc. Even if Eve knows that Alice and Bob are running DD-WRT, that's a lot of firmware images to work through. This becomes even more difficult when dealing with vendors whose firmware is not as standardized between releases.

That's where the LittleBlackBox project comes in. It contains a database of more than 2,000 private SSL keys that can be matched with the right hardware/firmware, and public certificates.

LittleBlackBox can be downloaded from here.

I'm not sure what admins or home users with affected routers are to do to protect themselves on this one, other than sloppy workarounds or find a different and unaffected router. I do know I'm quite tired of hard wired certificates and passwords embedded within devices.

For my security and technology observations throughout the day, find me on Twitter.

 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 8/14/2020
Lock-Pickers Face an Uncertain Future Online
Seth Rosenblatt, Contributing Writer,  8/10/2020
Hacking It as a CISO: Advice for Security Leadership
Kelly Sheridan, Staff Editor, Dark Reading,  8/10/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
7 New Cybersecurity Vulnerabilities That Could Put Your Enterprise at Risk
In this Dark Reading Tech Digest, we look at the ways security researchers and ethical hackers find critical vulnerabilities and offer insights into how you can fix them before attackers can exploit them.
Flash Poll
The Changing Face of Threat Intelligence
The Changing Face of Threat Intelligence
This special report takes a look at how enterprises are using threat intelligence, as well as emerging best practices for integrating threat intel into security operations and incident response. Download it today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-17475
PUBLISHED: 2020-08-14
Lack of authentication in the network relays used in MEGVII Koala 2.9.1-c3s allows attackers to grant physical access to anyone by sending packet data to UDP port 5000.
CVE-2020-0255
PUBLISHED: 2020-08-14
** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: CVE-2020-10751. Reason: This candidate is a duplicate of CVE-2020-10751. Notes: All CVE users should reference CVE-2020-10751 instead of this candidate. All references and descriptions in this candidate have been removed to prevent accidenta...
CVE-2020-14353
PUBLISHED: 2020-08-14
** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: CVE-2017-18270. Reason: This candidate is a duplicate of CVE-2017-18270. Notes: All CVE users should reference CVE-2017-18270 instead of this candidate. All references and descriptions in this candidate have been removed to prevent accidenta...
CVE-2020-17464
PUBLISHED: 2020-08-14
** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: none.
CVE-2020-17473
PUBLISHED: 2020-08-14
Lack of mutual authentication in ZKTeco FaceDepot 7B 1.0.213 and ZKBiosecurity Server 1.0.0_20190723 allows an attacker to obtain a long-lasting token by impersonating the server.