Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Risk

11/23/2008
12:00 AM
Commentary
Commentary
Commentary
50%
50%

Security and Return-Oriented Programming

You don't have to stray too far from the financial pages to know that returns of any kind aren't much to brag about these days. You could say the same thing about "return-oriented programing." In a nutshell, return-oriented programming security attacks start out like familiar attacks, in which attackers take advantage of a programming error in the target system to overwrite the runtime stack and divert program execution away from the path intended by the system's designer

You don't have to stray too far from the financial pages to know that returns of any kind aren't much to brag about these days. You could say the same thing about "return-oriented programing." In a nutshell, return-oriented programming security attacks start out like familiar attacks, in which attackers take advantage of a programming error in the target system to overwrite the runtime stack and divert program execution away from the path intended by the system's designers. But instead of injecting outside code, return-oriented programming lets attackers create any kind of computation or program by using the existing code. Sounds like fun, eh?

The term "return-oriented programming" describes how "good" instructions can be strung together to build malicious programs, which need to end with a return command. Erik Buchanan and Ryan Roemer, grad students at the University of California, San Diego, have showed that the process of building these malicious programs from good code can be automated by grouping sets of instructions into "gadgets," then abstracting much of the tedious work behind a programming language and compiler.

In a 2007 paper,  The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86) , UC San Diego's Hovav Shacham  described how return-oriented programming could be used to force computers with the x86 architecture to behave maliciously without introducing any bad code into the system. However, the attack required hand coding and relied on a quirk of the x86 design.

Now, Buchanan and Roemer have taken Shacham's work to the next level by showing that the process of building bad programs from good code using return-oriented programming can be automated, and that this vulnerability applies to RISC computer architectures--not just the x86 architecture.

"Most computer security defenses are based on the notion that preventing the introduction of malicious code is sufficient to protect a computer. This assumption is at the core of trusted computing, anti-virus software, and various defenses like Intel and AMD's no execute protections. There is a subtle fallacy in the logic, however: "Simply keeping out bad code is not sufficient to keep out bad computation," says UC San Diego professor Stefan Savage, a coauthor with Buchanan, Roemer, and Shacham of When Good Instructions Go Bad: Generalizing Return-Oriented Programming to RISC Return-oriented Programming. "You can create any kind of malicious program you can imagine--Turing complete functionality," adds Shacham.

"The threat posed by return-oriented programming, across all architectures and systems, has negative implications for an entire class of security mechanisms: Those that seek to prevent malicious computation by preventing the execution of malicious code," say the authors in When Good Instructions Go Bad: Generalizing Return-Oriented Programming to RISC Return-Oriented Programming. 

 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 7/13/2020
Omdia Research Launches Page on Dark Reading
Tim Wilson, Editor in Chief, Dark Reading 7/9/2020
Russian Cyber Gang 'Cosmic Lynx' Focuses on Email Fraud
Kelly Sheridan, Staff Editor, Dark Reading,  7/7/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal, a Dark Reading Perspective
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
The Threat from the Internetand What Your Organization Can Do About It
The Threat from the Internetand What Your Organization Can Do About It
This report describes some of the latest attacks and threats emanating from the Internet, as well as advice and tips on how your organization can mitigate those threats before they affect your business. Download it today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-14300
PUBLISHED: 2020-07-13
The docker packages version docker-1.13.1-108.git4ef4b30.el7 as released for Red Hat Enterprise Linux 7 Extras via RHBA-2020:0053 (https://access.redhat.com/errata/RHBA-2020:0053) included an incorrect version of runc that was missing multiple bug and security fixes. One of the fixes regressed in th...
CVE-2020-14298
PUBLISHED: 2020-07-13
The version of docker as released for Red Hat Enterprise Linux 7 Extras via RHBA-2020:0053 advisory included an incorrect version of runc missing the fix for CVE-2019-5736, which was previously fixed via RHSA-2019:0304. This issue could allow a malicious or compromised container to compromise the co...
CVE-2020-15050
PUBLISHED: 2020-07-13
An issue was discovered in the Video Extension in Suprema BioStar 2 before 2.8.2. Remote attackers can read arbitrary files from the server via Directory Traversal.
CVE-2020-10987
PUBLISHED: 2020-07-13
The goform/setUsbUnload endpoint of Tenda AC15 AC1900 version 15.03.05.19 allows remote attackers to execute arbitrary system commands via the deviceName POST parameter.
CVE-2020-10988
PUBLISHED: 2020-07-13
A hard-coded telnet credential in the tenda_login binary of Tenda AC15 AC1900 version 15.03.05.19 allows unauthenticated remote attackers to start a telnetd service on the device.