Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Risk

9/30/2010
07:20 PM
George V. Hulme
George V. Hulme
Commentary
50%
50%

In Software We (Can't) Trust

I can't think of more than a few attacks in the past decade that involved stolen certificates as part of the malware or exploit code. However, recent attacks, and new research highlights the increasing danger of trusting signed digital certificates.

I can't think of more than a few attacks in the past decade that involved stolen certificates as part of the malware or exploit code. However, recent attacks, and new research highlights the increasing danger of trusting signed digital certificates.While the danger of spoofed and forged certificates had always been a theoretical concern, it was Microsoft's spoofed certificates in 2001 when I first became aware of real-world attacks like this.

Today, they are growing commonplace.

Consider the Adobe attacks against Reader and Acrobat that exploit flaws as well as stolen certificates. from DarkReading earlier this month:

Meanwhile, Roel Schouwenberg, senior antivirus researcher for Kaspersky Lab, studied an attack exploiting the flaw that uses a stolen digital certificate from a credit union to sign the infected PDF file -- akin to what the Stuxnet attacks did. Schouwenberg says as this technique takes off, it will result in more missed attacks as well as more false positives from security software. "I predict that the security industry will have more misses of these files that come with stolen signatures, or [have] more false positives. We could well be in this high false positives [trend] next year, which we haven't seen in a while," he says.

As Schouwenberg points out, Stuxnet also used stolen digital certificates to do its thing. The worm that allegedly targets Iran's nuclear program used two stolen digital certificates from two separate Taiwanese technology firms.

Mike Wood, researcher at anti-virus firm Sophos, gave a talk today at this years' Virus Bulletin conference (wish I was there) about the abuse of digital signatures to increase the reputation of fraudulent software, or as part of how malware protects itself.

Wood's paper, which won't be widely available until after the conference, 'Want My Autograph?': The Use and Abuse of Digital Signatures By Malware, is an interesting read on Microsoft's Authenticode Program, which requires Windows kernel-mode software 'drivers' to be digitally signed - and how they can be abused. The paper also details Web-based PKI abuse, phishing attacks with certificates as bait, and many other challenges associated with digital certificates.

Wood concludes (unsurprisingly) that anti-virus software is well positioned to fight malicious or stolen certificates. I'm sure anti-virus has its place, but much more can be done by the software companies and the Certificate Authorities that sell these certificates to ensure those in use are legitimate.

In that story (also linked above) I wrote in 2001 about the spoofed Microsoft certificates, the analyst I interviewed came to a conclusion that is just as true today as it was nearly a decade ago:

Analysts say this incident shouldn't take away from the strengths of digital certificates as a security tool, but it does point to the weakness of the digital-certificate-assignment process. Says Hurwitz Group analyst Pete Lindstrom, the initial authentication process is "the Achilles heel" of public key infrastructure.

Woods' paper, unfortunately, isn't available until after the Virus Bulletin conference is over, so I'll update this post with a link as soon as it becomes available.

For my security and technology observations throughout the day, find me on Twitter.

Comment  | 
Print  | 
More Insights
Comments
Oldest First  |  Newest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 10/27/2020
Chinese Attackers' Favorite Flaws Prove Global Threats, Research Shows
Kelly Sheridan, Staff Editor, Dark Reading,  10/27/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-11484
PUBLISHED: 2020-10-29
NVIDIA DGX servers, all DGX-1 with BMC firmware versions prior to 3.38.30, contains a vulnerability in the AMI BMC firmware in which an attacker with administrative privileges can obtain the hash of the BMC/IPMI user password, which may lead to information disclosure.
CVE-2020-11485
PUBLISHED: 2020-10-29
NVIDIA DGX servers, all DGX-1 with BMC firmware versions prior to 3.38.30, contains a Cross-Site Request Forgery (CSRF) vulnerability in the AMI BMC firmware in which the web application does not sufficiently verify whether a well-formed, valid, consistent request was intentionally provided by the u...
CVE-2020-11486
PUBLISHED: 2020-10-29
NVIDIA DGX servers, all DGX-1 with BMC firmware versions prior to 3.38.30, contain a vulnerability in the AMI BMC firmware in which software allows an attacker to upload or transfer files that can be automatically processed within the product's environment, which may lead to remote code execution.
CVE-2020-11487
PUBLISHED: 2020-10-29
NVIDIA DGX servers, DGX-1 with BMC firmware versions prior to 3.38.30. DGX-2 with BMC firmware versions prior to 1.06.06 and all DGX A100 Servers with all BMC firmware versions, contains a vulnerability in the AMI BMC firmware in which the use of a hard-coded RSA 1024 key with weak ciphers may lead ...
CVE-2020-11488
PUBLISHED: 2020-10-29
NVIDIA DGX servers, all DGX-1 with BMC firmware versions prior to 3.38.30 and all DGX-2 with BMC firmware versions prior to 1.06.06, contains a vulnerability in the AMI BMC firmware in which software does not validate the RSA 1024 public key used to verify the firmware signature, which may lead to i...